Supporting Information

Protein Dynamics of Human Serum Albumin at

Hypothermic Temperatures Investigated by

Temperature Jump

Chih-Tsun Yang and Li-Kang Chu*

Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu

300044, Taiwan.

Table of contents

1. Deriving the evolutions of the relative fluorescence intensity change

2. Supplementary figures

Fig. S1. Normalized fluorescence spectra of dissolved tryptophan and HSA at 25 - 50 °C upon 300 nm excitation.

Fig. S2. Schematic procedure to generate the relative fluorescence intensity change evolution for tryptophan upon T-jump by eliminating photobleaching.

Fig. S3. Raw data of the evolutions of the fluorescence change of dissolved tryptophan and HSA without and with infrared laser heating, and corrected profiles.

3. Supplementary tables

Table S1. Laser powers for T-jump experiments.

Table S2. A₁, A₂, y₀, k₁, k₂, ϕ_B/ϕ_A , and ϕ_C/ϕ_A at different temperatures.

1. Deriving the evolutions of the relative fluorescence intensity change

Due to the photobleaching of tryptophan upon long-term ultraviolet exposure, the fluorescence intensity of tryptophan gradually decreased during the measurements. Thus, a blank experiment was performed to eliminate the contribution of photobleaching to tryptophan fluorescence change. A schematic of the procedure is provided in **Fig. S2**. The fluorescence intensity evolutions in the absence (**Fig. S2a**) and presence of 1550 nm IR laser (**Fig. S2b**) were collected, respectively. Then they were converted to their corresponding relative fluorescence intensity change profiles, as shown in **Fig. S2c** and **S2d**, respectively, using the following equation,

$$\frac{\Delta I}{I_0} = \frac{I(t) - I_0}{I_0} \cdot 100\%$$
 (Eq. S1)

where I_0 and I(t) denote the mean fluorescence intensity before the T-jump process and the fluorescence intensity evolution during the T-jump process, respectively. Then the corrected relative fluorescence intensity change evolution with the photobleaching eliminated, as shown in **Fig. S2e**, was derived by subtracting the time trace in **Fig. S2c** from that in **Fig. S2d**. The corrected fluorescence intensity change evolutions for tryptophan (W(t)) and HSA (H(t)) upon T-jump to different temperatures are shown as blue lines in **Fig. S3**. The corresponding uncorrected relative fluorescence intensity evolutions upon T-jump and fluorescence change evolution attributed to photobleaching are shown in red lines and grey lines in **Fig. S3**, concomitantly.

2. Supplementary figures

Fig. S1. The normalized fluorescence spectra of (a) tryptophan and (b) HSA at 25 - 50 °C upon 300 nm excitation.

Fig. S2. The schematic procedure to generate the relative fluorescence intensity change evolution for tryptophan (W(t)) upon T-jump by eliminating the photobleaching. Detailed description is provided in **Section 1** in the Supporting Information.

3. Supplementary tables

Table S1. Laser powers of the continuous-wave 1550 nm laser for temperature jump experiments from initial temperature of 25.0 °C.

Power of 1550 nm CW Laser (Watt cm ⁻²)	Jumped Temperature (T'/ °C)			
14.3	29.8			
17.9	30.9			
24.7	32.5			
28.3	33.1			
32.9	34.8			
47.8	37.7			
78.9	42.6			

T′ (°C)	A ₁	A ₂	y ₀ *	k ₁	k ₂	R ²	ϕ_B/ϕ_A	ϕ_{C}/ϕ_{A}^{*}
29.8	-0.09 ± 0.01	0.09 ± 0.01	1.01	0.70 ± 0.04	0.16 ± 0.01	0.908	1.07 ± 0.01	1.01
30.9	-0.13 ± 0.01	0.12 ± 0.01	1.01	0.87 ± 0.06	0.33 ± 0.02	0.915	1.09 ± 0.01	1.01
32.5	-0.23 ± 0.04	0.21 ± 0.04	1.02	0.98 ± 0.08	0.50 ± 0.03	0.919	1.12 ± 0.02	1.02
33.1	-0.18 ± 0.05	0.15 ± 0.05	1.03	1.26 ± 0.14	0.65 ± 0.06	0.823	1.10 ± 0.03	1.03
34.8	-0.27 ± 0.12	0.22 ± 0.12	1.05	1.44 ± 0.18	0.86 ± 0.11	0.815	1.14 ± 0.05	1.05
37.7	-0.26 ± 0.10	0.20 ± 0.10	1.06	1.79 ± 0.24	1.01 ± 0.13	0.750	1.15 ± 0.05	1.06
42.6	-0.32 ± 0.15	0.23 ± 0.16	1.09	2.46 ± 0.39	1.42 ± 0.25	0.706	1.19 ± 0.07	1.09

Table S2. A₁, A₂, y₀, k₁, k₂, ϕ_B/ϕ_A , and ϕ_C/ϕ_A at different temperatures.

* uncertainty < 1×10^{-3}