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Supplementary Fig. S1 Valence band spectrum of 1 M NaCl solution measured with photon energy hν = 1081.45 eV.

Water valence band. A measurement of the water valence band recorded for a 1 M aqueous NaCl
solution with hν = 1081.45 eV is shown in Fig. S1. The 3p and 3s peaks of Cl−, and Na+ 2p are also observed
along with the water valence-band peaks. The spectrum is shown on a binding energy scale, calibrated to
the literature value of the (nearly) neat water 1b1 peak in the absence of solute (11.33±0.03 eV).1 The
structures of the Cl− peaks and the water valence band itself are also representative for the MgCl2 and AlCl3
solutions.

Peak fits of ICD features. The ICD features, fitted with Voigt profiles as described in the text, for
AlCl3 and MgCl2 solutions measurement at the higher of two photon energies used in our work are shown
in Fig. S2. The water valence-band peaks contributing to the ICD features are shown by traces of differ-
ent colour. The estimated energy of these peaks, the measured energy, and the difference, as well as the
Coulomb penalty of these features are given in Table S3. The ICD features are independent of the photon
energy, therefore, the kinetic energies of these broad peaks are similar compared to the peak energies of
the corresponding lower-photon-energy measurement, shown in Fig. 4 of the main text. The values of the
Coulomb penalty are also in the same range.

Photon and kinetic energy calibration. Photon energies for the Na and Mg ICD spectra were calibrated
by measuring the O 1s photoelectron line with first and second order light at the chosen photon energy.
For the Al ICD experiment, the O 1s second order line was outside of the kinetic energy range of our
analyzer. The photon-energy calibration was therefore carried out after calibrating the kinetic energy scale
of the analyzer, see below. Assuming a linear electron-kinetic-energy scale, corrected photon energies were
determined as given in the main manuscript, with a correction to the nominal photon energy of −1.51(20),

a Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden. E-mail: geethanjali.gopakumar@physics.uu.se
b Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic. E-mail: petr.slavicek@vscht.cz
c Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
d Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. E-mail: hergenhahn@fhi-berlin.mpg.de
e Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
f MAX IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
g Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
h Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, Paris, France
i Department of Locally-Sensitive & Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
‡ These authors contributed equally to this work.

1–9 | 1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022



1260124012201200

2a1 2a1

1b2

1b2

3a1

3a1

1b1
1b1

ICD2s

ICD2p

Mg 2s
Mg 2p

1 M MgCl2 1318.15(16) eV hv

150014801460144014201400

2a1
2a1

1b2

1b2

3a1

3a1

1b1

1b1

ICD2s

ICD2p

Al 2s Al 2p

2 M AlCl3 1572.90(30) eV hv

 Measured data

 Background

 Spectra fit

 

Kinetic Energy [eV]

P
h
o
to

e
m

is
si

o
n
 I
n
te

n
si

ty
 [

a
rb

. 
u
n
it

s]

Supplementary Fig. S2 Curve fitting of ICD and photoelectron peaks of AlCl3 and MgCl2 spectra measured with hν

1572.9 eV and 1318.15 eV, respectively. The Voigt profiles that are used to fit the ICD structure correspond to different
water valence band orbitals, 1b1 (yellow), 3a1 (green), 1b2 (blue), and 2a1 (purple) for both ICD2p and ICD2s.

Supplementary Fig. S3 Na, Mg and Al 1s core level photoelectron spectra from aqueous 1 M NaCl, 1 M MgCl2 and 2 M
AlCl3 solutions. The Mg 1s spectrum is from a separate calibration experiment, see text for details.

−1.75(20), and −2.1(4) eV being determined for the NaCl, MgCl2, and AlCl3-experiments, which is well in
agreement with our experience from other calibration runs at the P04 beamline.

The kinetic energy scale for the Na and Mg ICD spectra was then calibrated using the corrected photon
energy together with binding energies taken from Ref. 2 and collected in Table S1.

It has recently been shown that binding energies (or, more precisely, vertical ionization energies) in the
liquid state can be measured on an absolute scale by referring to the cutoff formed by zero-kinetic energy
electrons when a negative bias is applied to the liquid jet.1,7 This approach, although correct, has not been
used here; we instead pragmatically refer binding energies for the Na 1s, Mg 1s and Al 1s features for the
solutions in question to the binding energy of the O 1s feature, setting it to its value of 538.1±0.1 eV found
in neat liquid water.1,3 By that, we are sensitive to the potential influence of a streaming potential on our
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Supplementary Tab. S1 Binding energies used in this work, in eV. Values for the 1s levels were determined in this work,
and are based on an O 1s binding energy for neat liquid water of 538.1 eV.1,3 In cases of the NaCl and AlCl3 solutions this
value was used as a proxy for the O 1s binding energy in the electrolyte solution.4 We averaged over the two fine-structure
levels of the 2p vacancy state. Original values from Ref. 2 were given without a stated accuracy; the error shown here is our
estimate considering the methodology employed in this work. Values given for the valence states of water are calculations
from this work for water molecules in the first solvation shell of the respective metal center, see Tab. S5. See text for details.

Species 1s 2s 2p 3p
Na (1 M NaCl) 1076.7(4) 68.00(15)5 35.40(04)5

Mg (1 M MgCl2) 1309.9(10) 94.33(20)2 55.6(2)2

Al (2 M AlCl3) 1567.7(10) 125.15(20)2 80.4(2)2

Cl (2 M AlCl3) 9.50(15)6

1b1 3a1 1b2 2a1

H2O(MgCl2) 11.62 14.01 17.21 30.29
H2O(AlCl3) 11.97 15.6 17.64 30.72

measured energies, which might be different when changing between solutions, and we neglect possible
changes of the actual binding energy as a result of, e.g., rearrangement of the hydrogen-bonding network.
We estimate the potential error due to these shortcomings by considering the magnitude of the underlying
effects: 1. Streaming potentials for highly conductive solutions were found to roughly vary between 0.1 and
0.3 eV.8 2. The absolute change in binding energy of water valence and solvent peaks between neat water
and 2 M NaI solution was found to not exceed 0.1 eV.7 To account for these two factors, we increase the
error of binding energies determined in the course of this work by 0.2 eV.

The binding energy of the Na 1s state in 1 M aqueous NaCl solution was calibrated against the O 1s line
of the same solution, measured back-to-back at equal photon energy and pass energy, giving 1076.7(4) eV
independent of any photon energy and kinetic energy calibrations. A slightly higher value, but within the
given error, is read from Fig. S3.

The binding energy of the Mg 1s state in 1 M aqueous MgCl2 solution was determined in a separate
experiment using the SOL3PES setup at the U49/2 PGM1 beamline of BESSY II at Helmholtz-Zentrum Berlin
für Materialien und Energie.9,10 Here, firstly the photon-energy scale was calibrated by measuring the O 1s
feature of the solution with first and second diffraction order light from the monochromator. Then measuring
neat water (with 50 mM NaCl added), the kinetic-energy scale of the analyzer was calibrated to a value of
538.1 eV for the O 1s peak.1 A spectrum of the Mg 1s peak recorded using the calibrated photon energy
and kinetic-energy scales then yielded a binding energy of 1309.9(4) eV, where the error contains estimates
for the inaccuracy of the peak-position determination, the linearity of the analyzer energy scale, the error of
literature binding energy, and contributions from the streaming potential and solute-induced binding-energy
changes as outlined above. The photon energy was set to 1410.5(1) eV for this measurement.

For the measurements of the Al3+ electrolyte, a different route had to be taken due to the photon-energy
limitations of the U49/2 PGM1 beamline, resulting in it being impossible to measure the Al 1s photoemission
feature in the BESSY II calibration experiments. Similarly to the Mg2+ experiment, the photon energy was
calibrated by measuring first and second diffraction order light from the monochromator. Then the kinetic-
energy scale of the analyzer was calibrated to a value of 538.1 eV for the O 1s peak.1,3 Here, however, due to
lack of time, no separate measurement of the O 1s peak could be carried out from neat liquid water. Instead
we used the literature value for neat liquid water as a proxy for the O 1s peak of the 2 M AlCl3 solution. A
measurement of the Al KLL Auger peak (see the left hand panel of Fig. 2(a)), with the main feature being
fitted by an exponentially modified Gaussian profile, then yielded a kinetic energy of 1380.9(4) eV; the error
includes a 0.2 eV contribution representing potential changes of the O 1s binding energy in AlCl3 solution
versus water. We used this value for Al KLL to calibrate the kinetic-energy scale of our Al ICD experiment,
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and subsequently determined the photon-energy correction for that experiment given above. From the Al
ICD set of measurements at PETRA, a scan over the Al 1s feature at a photon energy of 1750 eV yielded a
binding energy of 1567.75 eV, with the same corrections applied. This same spectrum, calibrated against
the O 1s feature of AlCl3 solution recorded back-to-back, yields a binding energy of 1567.63 eV, when again
538.1 eV is used as the O 1s binding energy in the solution. We summarize these two measurements as
1567.7(4) eV.

Finally, in a third experiment we tested for the consistency of the two binding-energy values determined
as described above, by measuring Mg 1s of 1 M MgCl2 solution and Al 1s of 2 M AlCl3 solution with equal
photon energy of 1760 eV (nominal value of the beamline, no correction attempted). This set of spectra
yielded a binding-energy difference of the two features of 258.7 eV, while the data given above differ by
257.8 eV. This disagreement is outside of the error bars given above for the 1s measurements, albeit not
by much. We point out that in this experiment Mg 1s was measured at 1760 eV photon energy, while our
other experiment was at 1410.5 eV. (For Al 1s practically equal photon energies were used.) Although the
binding energy should be independent of photon energy, effects like post-collision interaction in principle
could contribute to the discrepancy of the two measurements we have observed. At this moment this point
is speculative, however. In order to reflect our uncertainty about the true 1s binding energies, we have
increased the error bars of the input values to the calculation of the expected two-hole final state energies
(Fig. 7 and Tables S2 and S3) to ±1 eV. This contribution to the systematic error manifests itself as an overall
shift of all experimental Mg2+ or Al2+ energies, which is not essential for the conclusions in this paper.

For the water valence single vacancy states we found it most adequate to use the binding energies
calculated in this work specifically for a water molecule directly coordinated to the respective metal center,
since it it these water molecules that primarily take place in ICD of a metal vacancy. As discussed in the
main text and summarized again in Tab. S5 of the Supplementary Information, these may differ notably
from values found for neat liquid water.

Supplementary Tab. S2 The experimental ICD electron kinetic energies and two-hole energies. Ek (est.) is the energy
estimated from the binding energies of the orbitals involved in the decay. Ek (meas.) is the experimentally measured kinetic
energy. The Coulomb penalty, ECp is the difference between Ek (est.) and Ek (meas.). The two-hole energy was obtained
as E2h = E1s −Ek (meas.), and is shown in Fig. 7. E1s (Mg2+) = 1309.9 eV, E1s (Al3+) = 1567.7 eV. The associated
data are collected for Al3+ and Mg2+, measured with the lower of two hν-values used in our experiments, 1569.8 eV and
1315.25 eV, respectively. The final-state designation denotes first the vacancy in the metal center, second the vacancy in
the surrounding water solvation shell. All energies are given in eV.

Final Al3+ (hν = 1569.8 eV) Mg2+ (hν = 1315.25 eV)

state Ek (est.) Ek (meas.) ECp E2h Ek (est.) Ek (meas.) ECp E2h

2p−1 1b−1
1 1475.33 1470.87 4.46 96.83 1242.68 1239.21 3.47 70.69

2p−1 3a−1
1 1471.70 1467.88 3.82 99.82 1240.29 1236.83 3.46 73.07

2p−1 1b−1
2 1469.66 1465.58 4.08 102.13 1237.09 1235.01 2.08 74.89

2p−1 2a−1
1 1456.58 1454.00 2.58 113.70 1224.01 1223.2 0.81 86.70

2s−1 1b−1
1 1430.58 1428.43 2.15 139.27 1203.95 1204.34 -0.39 105.56

2s−1 3a−1
1 1426.95 1423.42 3.53 144.28 1202.56 1200.37 1.19 109.53

2s−1 1b−1
2 1424.91 1420.33 4.58 147.37 1198.36 1196.84 1.52 113.07

2s−1 2a−1
1 1411.83 1408.77 2.82 158.93 1185.28 1185.72 -0.44 124.18

2p−2 Auger 1407.7 1380.9 186.8 1198.7 1175.5 134.40

The energy estimated for the ICD peaks, their measured energy, and the difference of these two numbers
(‘Coulomb penalty’), are given in Table S2 for the measurements shown in Fig. 4 of the main manuscript
(lower photon energy), and in Table S3 for the measurements at higher photon shown in Fig. S2 of the
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Supplementary Tab. S3 As Supplementary Table S2, but results from the spectra measured at hν = 1572.9 eV for Al3+

and 1318.15 eV for Mg2+.

Final Al3+ (hν = 1572.9 eV) Mg2+ (hν = 1318.15 eV)

state Ek (est.) Ek (meas.) ECp E2h Ek (est.) Ek (meas.) ECp E2h

2p−1 1b−1
1 1475.33 1471.68 3.65 96.02 1242.68 1239.89 2.79 70.01

2p−1 3a−1
1 1471.70 1467.69 4.01 100.01 1240.29 1236.98 3.31 72.92

2p−1 1b−1
2 1469.66 1465.09 4.57 102.61 1237.09 1234.9 2.19 75.00

2p−1 2a−1
1 1456.58 1454.31 2.27 113.39 1224.01 1223.54 0.47 86.36

2s−1 1b−1
1 1430.58 1428.28 2.30 139.42 1203.95 1204.52 -0.57 105.38

2s−1 3a−1
1 1426.95 1423.18 3.77 144.53 1202.56 1200.37 1.19 109.53

2s−1 1b−1
2 1424.91 1420.29 4.62 147.41 1198.36 1196.67 1.69 113.23

2s−1 2a−1
1 1411.83 1407.36 4.47 160.34 1185.28 1185.66 -0.38 124.25

2p−2 Auger 1407.7 1380.9 186.8 1198.7 1175.5 134.40

Supplementary Information. See the main text for the definition of the table entries, with Ek(est.) = E1s −
Eb,v1 −Eb,v2. The ICD features are independent of the photon energy, therefore, the kinetic energies of these
broad peaks are similar in both measurements. The values for the Coulomb penalty are also in the same
range. The columns ‘Ek(est.)’ and ‘E2h’ are subject to a systematic error in the measurement of the 1s binding
energy, which may lead to a common shift of all Mg or Al data points by ±1 eV, see above. Errors for the
line positions retrieved by the peak fitting are estimated as ±0.5 eV for states involving a 3a1 or 1b2 vacancy,
±0.8 eV for 2p−11b−1

1 states and ±1 eV for 2s−11b−1
1 states and those involving a 2a1 vacancy.

Molecular dynamics. In order to generate a set of structures, we performed classical molecular simula-
tions of NaCl, MgCl2, and AlCl3 solutions. These classical non-polarizable force fields allowed us to perform
long molecular simulations for relatively large-scale systems. In this way, we could account for long-range
polarizability in subsequent QM/MMPol calculations. The parameters for classical simulations were taken
from the literature to best represent the radial distribution functions for the cation–water oxygen. We regard
this parameter as crucial for subsequent calculations of the ICD states. Note, that for the magnesium cation,
we used the Electronic Continuum Correction (ECC),11,12 which employs scaled charges and a slightly mod-
ified van der Waals radius of the ions in order to best reproduce neutron scattering data specifically for the
Mg–O distance in solution. Details of the classical simulations together with the Lennard-Jones parameters
used in the simulations are provided in Table S4. The force field for MgCl2 was taken from Ref. 13 and for
NaCl from Ref. 14. The aluminium parameters were taken from Ref. 15. Water was in all cases simulated
by the SPC/E model.16 The classical simulations were performed for 1 M solutions for NaCl and MgCl2 and
for 2 M solution for AlCl3 to match the experiment.

The simulation box for both NaCl and MgCl2 contained 160 molecules of salt and an appropriate number
of water molecules to match the respective density (8753 water molecules for NaCl and 8810 for MgCl2). For
AlCl3, the simulation box contained 267 aluminium cations, 801 chloride anions, and 8472 water molecules.
The total length of each simulation was 200 ns, the time step for the propagation was set to 2 fs, and
3D periodic boundary conditions were employed. The simulation temperature was set to 300 K and was
controlled by a velocity-rescale thermostat with time coupling set to 0.5 ps (0.1 ps for AlCl3). The pressure
of the system was set to 1 bar which was controlled by the Parrinello–Rahman barostat17 with a coupling
constant of 1 ps (2 ps for AlCl3). The LINCS18 constrain algorithm of fourth order was applied to all bonds.
The van der Waals interactions were truncated at 1.5 nm (1.2 nm for AlCl3); the long-range electrostatic
interactions were calculated by the particle mesh Ewald method.

Population analysis. The preference of ICD electron emission from specific molecular orbitals can also
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atom charge [e] σ [nm] ε [kJ/mol]

Na+ 1 0.2450 0.3200
Cl− −1 0.4400 0.4700

Mg2+ 1.5 0.1360 3.6610
Cl− −0.75 0.4100 0.4928

Al3+ 3 0.14472 0.906254
Cl− −1 0.483045 0.0534920

Supplementary Tab. S4 Parameters used in the classical molecular dynamics simulations.

Supplementary Fig. S4 Radial distribution functions, g(r), obtained from classical simulations of 1 M NaCl, 1 M MgCl2,
and 2 M AlCl3 salt solutions at 300 K. Panels (a) and (b) show g(r) as a function of distance (in Å) for cation–water (+O)
and cation–anion (+−) pairs, respectively. The distances in panel (a) are measured from the cation to the water oxygen.

be conveniently demonstrated for the [Al(H2O)5Cl]2+ complex. In this complex, the chloride p orbitals can
be either perpendicular (3px and 3py) or parallel (3pz) to the connecting line between chloride and the
central cation. The orbital overlap between the chloride anion and the central ion is very different in the
two cases. The Löwdin reduced orbital population per molecular orbital shows that the px and py molecular
orbitals are localized only to less than 2% on the central cation while the contribution amounts to 13% for
pz. Since the ICD signal intensity should be proportional to the overlap between the orbitals of the ionized
cation and of the neighbouring molecule, we can suppose that the signal arising from the 3pz orbital of
chloride would be quite strong. On the same basis, we can suppose that the 3s contribution would be much
smaller.

Supplementary Fig. S5 Selected molecular orbitals for the [Al(H2O)5Cl]2+ complex. The Löwdin reduced orbital population
per molecular orbital was performed at the BH&HLYP 6-31+g* level in the polarizable continuum, respective molecular
orbitals are depicted with an isovalue of 0.05 e.

Electronic structure of water in the first solvation shell. For conciseness, we summarize here the
results of our electronic structure calculations for water in the first solvation shell of a metal cation, see
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Fig. 6 in the main text. Experimental binding energies for neat liquid water are shown for comparison, and
were derived by using the recent absolute measurement of water’s vertical ionization energy1 for the 1b1

level, and the 1b1-3a1, 1b1-1b2 and 1b1-2a1 energy gaps from Ref. 19 to subsequently calculate the binding
energies of the other levels.

system 1b1 3a1 1b2 2a1

water (exp)1,19 11.33 13.67 17.51 31.07

water (theory) 11.33 13.47 16.96 29.87

Na+ · · ·(H2O)6 10.72 12.72 16.42 29.37

Mg2+ · · ·(H2O)6 11.62 14.01 17.21 30.29

[Al(H2O)6]
3+ 11.97 14.2/15.6* 17.64 30.72

Supplementary Tab. S5 Vertical ionization energy for water molecules in the neat liquid and in the first coordination shell
of a metallic cation for NaCl, MgCl2, and AlCl3 aqueous solutions, from peak fitting to the data obtained in the QM/MMPol
IEDC calculations. Energies are given in eV. The data were calculated at the LC-ωPBE/cc-pVTZ level. *This structure is
a doublet peak.

Orbitals Na+ · · ·H2O Mg2+ · · ·H2O Al3+ · · ·H2O

E2h ECp Ek E2h ECp Ek E2h ECp Ek

2p−1 1b−1
1 48.6 3.0 1028.1 73.1 4.7 1236.8 97.4 4.4 1470.3

2p−1 3a−1
1 50.6 3.2 1026.1 76.0 4.8 1233.9 101.9 5.4 1465.8

2p−1 1b−1
2 54.0 2.9 1022.7 78.3 4.2 1231.6 102.7 4.3 1465.0

2p−1 2a−1
1 68.7 4.1 1008.0 91.9 4.4 1218.0 116.5 4.5 1451.2

2s−1 1b−1
1 78.3 4.1 998.4 106.2 4.6 1203.7 135.5 4.6 1432.2

2s−1 3a−1
1 80.8 4.8 995.9 109.6 5.2 1200.3 139.8 5.4 1427.9

2s−1 1b−1
2 83.8 4.1 992.9 111.8 4.5 1198.1 140.7 4.4 1427.0

2s−1 2a−1
1 97.2 4.0 979.5 125.1 4.4 1184.8 154.5 4.6 1413.2

2p−2 Auger 90.6 986.1 136.6 1173.3 186.9 1380.8

Supplementary Tab. S6 MOM/LC-ωPBE/cc-pVTZ (with cc-cPVTZ basis for the cation) cation two-hole energies for
a minimal model containing one cation and one water molecule. The dimer was solvated by a 20 Å-radius sphere of
molecules, treated at the MMPol level. ECp was calculated as ECp = E2h −Eb,v1 −Eb,v2, the values of Eb,vi are provided in
Supplementary Table S7. The kinetic energy was calculated as Ek = E1s −E2h. The experimental values of E1s were used
since the theoretical values at the same level of theory have an error of several eV. E1s (Na+) = 1076.7 eV, E1s (Mg2+) =
1309.9 eV, E1s (Al3+) = 1567.7 eV. Two-hole states are designated like in Supplementary Table S2. All values are reported
in eV.
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H2O cation

1b1 3a1 1b2 2a1 2p 2s 1s

Na+ · · ·H2O 10.9 12.7 16.4 29.9 34.7 63.3 1073.1

exp Na+ 35.45 68.05 1076.7

Mg2+ · · ·H2O 12.1 14.9 17.8 31.2 56.3 89.5 1307.6

exp Mg2+ 55.51/55.792 94.332 1309.9

Al3+ · · ·H2O 12.3 15.8 17.7 31.3 80.7 118.6 1563.5

exp Al3+ 80.27/80.672 125.152 1567.7

exp H2O1,19 11.33 13.67 17.51 31.07

Supplementary Tab. S7 MOM/LC-ωPBE/cc-pVTZ (with cc-cPVTZ basis for the cation) energies for a minimal model
containing one cation and one water molecule. The dimer was solvated by a 20 Å-radius sphere of molecules treated at
the MMPol level. The values correspond to Eb,vi, e.g., binding energies of the ith electron involved in the ICD process.
Experimental 1s values are from this work, experimental 2p and 2s values are from the references given at the respective
values. Experimental values for water are from Supplementary Tab. S5. All values are reported in eV.

Calculated binding energies and ICD energies in the gas phase. In Supplementary Tables S8 and S9
we give the orbital energies and two-hole state energies for a minimal model consisting of a metal-water
dimer, calculated without taking the effects of a polarizable medium (the surrounding water environment)
into account.

Na+ · · ·H2O Mg2+ · · ·H2O Al3+ · · ·H2O

E2h ECp E2h ECp E2h ECp

2p−1 1b−1
1 68.0 4.0 110.0 7.8 156.7 9.4

2p−1 3a−1
1 73.2 6.9

2p−1 1b−1
2 75.7* 5.8 115.3 7.5 161.8 9.3

2p−1 2a−1
1 89.4 6.3 128.9 7.7 175.8 9.5

2s−1 1b−1
1 98.9 6.3 143.2 7.7 194.6 9.3

2s−1 3a−1
1 101.7 6.8

2s−1 1b−1
2 104.6 6.1 148.5 7.4 199.4 8.9

2s−1 2a−1
1 117.9 6.2 162.2 7.7 213.8 9.5

Supplementary Tab. S8 Two-hole energies like in Supplementary Table S6, for a minimal model containing one cation
and one water molecule in the gas phase. The values of Eb,vi are provided in Table S9. *Due to convergence issues, less
than 20 calculations were performed. The SCF convergence for ICD states involving the 3a1 water orbital was very poor,
therefore the data are missing.

H2O cation

1b1 3a1 1b2 2a1 2p 2s 1s

Na+ · · ·H2O 18.5 20.8 24.4 37.6 45.5 74.1 1083.8

Mg2+ · · ·H2O 26.1 29.3 31.7 45.1 76.1 109.4 1327.3

Al3+ · · ·H2O 35.3 39.8 40.5 54.3 112.0 150.0 1594.4

Supplementary Tab. S9 Binding energies like in Supplementary Table S7, for a minimal model containing one cation and
one water molecule in the gas phase.
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