Supplementary Information for

Investigation of the Molecular and Mechanistic Basis for the Regioselective Metabolism of Midazolam by Cytochrome P450 3A4

Tingting Fu^a, Qingchuan Zheng^{a,b,*} and Hongxing Zhang^{a,*}

^a Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023,

China

^b Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, China

*Corresponding authors

E-mail addresses: zhengqc@jlu.edu.cn (Qingchuan Zheng), zhanghx@jlu.edu.cn (Hongxing Zhang).

List of contents:

Table. S1 Hydrogen bond analysis for the single-ligand complex.

- Fig. S1 The crystal structure of CYP3A4 (PDB ID: 5TE8). The heme (grey) and residues that make up the "sandwich" structure (cyan) are shown in sticks. The F-F' loops, G-G' loops, F' and G' regions are highlighted in dark grey. Moreover, the active site, the allosteric site proposed by Redhair et al.¹, and the allosteric site reported by Denisov et al.² are highlighted by orange, yellow and green, respectively.
- Fig. S2 CYP3A4 structural model and evaluation results. (a) is the full-length CYP3A4 structure, and (b) is the Ramachandran plot and its detailed information calculated by MolProbity tool.
- Fig. S3 The complex model of MDZ and CYP3A4: (a) single-ligand complex (CYP3A4-MDZ), (b) multiple-ligand complex (CYP3A4-MDZ-effectors). The heme (yellow), substrate (lime) and effectors (magenta and cyan) are shown in sticks.
- Fig. S4 The RMSD values of protein backbone atoms, backbone atoms of active site residues (within 5 Å of heme) and ligand heavy atoms in (a) CYP3A4-MDZ and (b) CYP3A4-MDZ-effectors systems.
- **Fig. S5** Superposition of the binding poses (lime) identified form cMD simulation and crystal structure (PDB ID: 5TE8, blue). The heme (yellow) and MDZ are shown in sticks.
- **Fig. S6** The distance between oxidation sites (C1' and C4 positions) of MDZ and heme iron in CYP3A4-MDZ (**a-d**) and CYP3A4-MDZ-effectors complexes (**e** and **f**).
- Fig. S7 The distance between effectors and heme iron in the aMD trajectories 1 and 2. The representative conformations of Effector A at 40, 120, 17 ns are shown as cartoons, respectively.
- Fig. S8 The superimposed conformation of three substrate binding poses in CYP3A4-MDZeffectors system. The F-F' and C-terminal loops are highlight in orange, green and blue in pose A, B and C, respectively.

Acceptor	Donor	Fraction (%)	Average distance (Å)	Average angle (°)
		Pose A		
MDZ@N2	S119@HG	34.6	2.83	156.97
MDZ@N2	R105@HE	1.77	2.89	147.46
		Pose B		
MDZ@N2	S119@HG	11.8	2.85	158.40
MDZ@N1	R105@HH12	2.64	2.91	151.89
		Pose C		
MDZ@N2	S119@HG	1.11	2.87	157.96

Table. S1 Hydrogen bond analysis for the single-ligand complex.

Fig. S1 The crystal structure of CYP3A4 (PDB ID: 5TE8). The heme (grey) and residues that make up the "sandwich" structure (cyan) are shown in sticks. The F-F' loops, G-G' loops, F' and G' regions are highlighted in dark grey. Moreover, the active site, the allosteric site proposed by Redhair et al.¹, and the allosteric site reported by Denisov et al.² are highlighted by orange, yellow and green, respectively.

Fig. S2 CYP3A4 structural model and evaluation results. (**a**) is the full-length CYP3A4 structure, and (**b**) is the Ramachandran plot and its detailed information calculated by MolProbity tool.

Fig. S3 The complex model of MDZ and CYP3A4: (**a**) single-ligand complex (CYP3A4-MDZ), (**b**) multiple-ligand complex (CYP3A4-MDZ-effectors). The heme (yellow), substrate (lime) and effectors (magenta and cyan) are shown in sticks.

Fig. S4 The RMSD values of protein backbone atoms, backbone atoms of active site residues (within 5 Å of heme) and ligand heavy atoms in (**a**) CYP3A4-MDZ and (**b**) CYP3A4-MDZ-effectors systems.

Fig. S5 Superposition of the binding poses (lime) identified form cMD simulation and crystal structure (PDB ID: 5TE8, cyan). The heme (yellow) and MDZ are shown in sticks.

Fig. S6 The distance between oxidation sites (C1' and C4 positions) of MDZ and heme iron in CYP3A4-MDZ (**a-d**) and CYP3A4-MDZ-effectors complexes (**e** and **f**).

Fig. S7 The distance between effectors and heme iron in the aMD trajectories 1 and 2. The representative conformations of Effector A at 40, 120, 17 ns are shown as cartoons, respectively.

Fig. S8 The superimposed conformation of three representative substrate-binding poses (pose **A**, **B** and **C**) in CYP3A4-MDZ-effectors complex. The F-F' and C-terminal loops are highlight in orange, pale green and blue in pose **A**, **B** and **C**, respectively.

References

- 1. M. Redhair, J. C. Hackett, R. D. Pelletier and W. M. Atkins, *Biochemistry*, 2020, 59, 766-779.
- I. G. Denisov, Y. V. Grinkova, T. Camp, M. A. McLean and S. G. Sligar, *Biochemistry*, 2021, 60, 1670-1681.