Supplementary Information

High–efficiency photoreduction of CO₂ in low vacuum

Yuxin Liu,^{a,e} Shuai Kang,^{*a,b} Tinghua Li,^c Zhuofeng Hu,^{*d} Yiwei Ren,^{a,b} Ziwei Pan,^b Xie Fu,^{a,b} Liang Wang,^{a,b} Shuanglong Feng,^{a,b} Jinling Luo,^b Lei Feng^{a,b} and Wenqiang Lu^{*a,b}

^a Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

^b Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China

^c Technical Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China

^d School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China

^e University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: Shuai Kang (kangshuai@cigit.ac.cn); Zhuofeng Hu (huzhf8@mail.sysu.edu.cn); Wenqiang Lu (wqlu@cigit.ac.cn)

Table of Contents

Figure S1. Photocatalytic CO ₂ reduction system with online gas analysis
Figure S2. Absolute gas pressure vs. CO_2 content and the approximate H_2O content
Figure S3. Schematic of the reactor
Figure S4. Experimental procedure in this work
Figure S5. Temperature of the titanium oxide covered glass slide during irradiation7
Figure S6. CH4 yield at 390 K with and without irradiation
Figure S7. Physical characterizations of the commercial α -TiO ₂
Figure S8. Gas chromatography curves of CH ₄ in different CO ₂ ratios 10
Figure S9. Calibration curves of the gas chromatography of CH ₄ at different pressures 11
Figure S10. Gas chromatography curves of CH ₄ with and without catalysts
Figure S11. CH ₄ yield in different vacuum degrees
Table S1. CH4 selectivity at various vacuum degrees. 14
Table S2. CO production rate at different gas pressure and CO ₂ content
Figure S12. Binding energy evolution of the TiO ₂ photocatalyst upon long-term stability test.15
Figure S13. High-resolution XPS spectra of O 1s and C 1s on TiO ₂ before stability test 16
Figure S14. High-resolution XPS spectra of O 1s after running 3.5h and 24 h 17
Table S3. Peak fitting parameters of C 1s 18
Figure S15. Mechanism of CO ₂ photoreduction
Figure S16. CH ₄ /CO accumulation and yield of the Pt-TiO ₂ catalyst at -80 kPa and 0 kPa 20
Figure S17. CH ₄ accumulation and yield on Pt–TiO ₂ catalysts at –80 kPa in pure CO ₂ 21
References

Figure S1. Photocatalytic CO₂ reduction system with online gas analysis. (a) Schematic and (b) photograph.

The total gas pressure:

$$P_{total} = P_{CO_2} + P_{H_2O}$$

According to the Ideal Gas Law:

$$P = \frac{nRT}{V}$$

Where P is the absolute pressure, V is the volume, T is the absolute temperature (T). n is the number of moles, R is the universal gas constant, 8.3145 J/mol K. In this system, R, T and V is constant. If we set,

$$a = \frac{RT}{V}$$

 $P = a \times n$

Then,

Thus,

$$P_{total} = P_{CO_2} + P_{H_2O} = a \times n_{CO_2} + a \times n_{H_2O}$$
$$n_{CO_2} = \frac{1}{a} \times P_{total} - n_{H_2O}$$

From the linear correlation between the absolute gas pressure and CO_2 content in Figure S2, the H₂O content in the system is constant and approximately 0.16 mmol.

Figure S2. Absolute gas pressure vs. CO₂ content and the approximate H₂O content.

Figure S3. Schematic of the reactor.

Figure S4. Experimental procedure in this work.

Figure S5. Temperature of the titanium oxide covered glass slide during irradiation.

Figure S6. CH₄ yield at 390 K with and without irradiation.

Figure S7. Physical characterizations of the commercial α -TiO₂. (a) XRD pattern of the commercial α -TiO₂. (101) is the most stable lattice plane. (b) Absorption spectrum of the commercial α -TiO₂ covered glass slide. Inset is the Mott-Schottky curve. (c-d) TEM images. Inset is the EDS spectrum. (e) HAADF image and the corresponding elemental mappings of O and Ti.

Figure S8. Gas chromatography curves of CH₄ in different CO₂ ratios.

Figure S9. Calibration curves of the gas chromatography of CH₄ at different pressures.

Figure S10. Gas chromatography curves of CH₄ with and without catalysts.

Figure S11. CH₄ yield in different vacuum degrees.

Unit (%)	10% CO2	70% CO ₂	100% CO ₂
-80 kPa	68.52	85	85.89
-60 kPa	64.89	73.5	89.368
-40 kPa	23.894	60.14	95.734
-20 kPa	37.93	95.19	53.987
-0 kPa	46.85		95.903

Table S1. CH₄ selectivity at various vacuum degrees.

The selectivity of CH₄ in the following discussion is calculated according to the following equation.

Selectivity_{CH₄} =
$$\frac{n_{CH_4}}{n_{CH_4} + n_{CO}}$$

where n is the mole number.

Table S2. CO production rate at different gas pressure and CO₂ content.

Unit (nmol g ⁻¹ h ⁻¹)	10% CO ₂	70% CO ₂	100% CO ₂	
-80 kPa	180.5	90.63	103.35	
-60 kPa	244.97	139.33	33.74	
-40 kPa	0 kPa 51.12		15.03	
-20 kPa	335.83	6.23	29.84	
0	5.23	6.01	9.34	

Figure S12. Binding energy evolution of the TiO₂ photocatalyst upon long-term stability test. (a) XPS survey spectra and (b) high-resolution XPS spectra of Ti 2p.

Figure S13. High resolution XPS spectra of O 1s and C 1s on commercial TiO₂ before stability test.

Figure S14. High-resolution XPS spectra of O 1s after running 3.5h and 24 h.

	Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %
	C-C	284.4	1.33	10197.72	74.94
Before test	C-O	285	1.32	2732.26	20.08
	O=C-O	288.1	1.81	678.06	4.98
	C-C	284.4	1.18	18375.97	80.83
3.5h at -80kPa	C-O	285	1.53	3968.54	17.46
	O=C-O	288.1	3.37	389.35	1.71
	C-C	284.4	1.14	15922.5	85.19
3.5 h at 0kPa	C-O	285	1.84	1372.62	7.34
	O=C-O	288.1	1.17	339.88	1.82
	C-C	284.4	1.32	8876.62	79.25
24 h at -80kPa	C-O	285	1.45	1730.15	15.45
	O=C-O	288.1	1.31	507.98	4.54
	C-C	284.4	1.2	10383.1	78.41
24 h at 0kPa	C-O	285	1.35	1970.19	14.88
	O=C-O	288.1	3.37	946.72	7.15

Table S3. Peak fitting parameters of C 1s.

Figure S15. Mechanism of CO_2 photoreduction and the fundamental steps of CO_2 photoreduction in two pathways.

Generally, there are two pathways of CO_2 photoreduction. One is the formation of CO (following the equations S3–S5), the other is the formation of CH₄ (following the equations S3–S4, S6–S12). ^{1, 2}

$CO_2 + 2H \cdot \rightarrow HCOOH *$	(S3)
$HCOOH^* + H^{\bullet} \rightarrow CO^* + H_2O$	(S4)
Pathway 1: CO formation	
$CO^* \rightarrow CO$	(S5)
Pathway 2: CH ₄ formation	
$CO^{*+}H^{\bullet} \rightarrow COH^{*}$	(S6)
$COH^* + H^{\bullet} \rightarrow C^* + H_2O$	(S7)
$C^* + H^{\bullet} \rightarrow CH^*$	(S8)
$CH^* + H^{\bullet} \rightarrow CH_2^*$	(S9)
$\mathrm{CH}_2^* + \mathrm{H} \cdot \to \mathrm{CH}_3^*$	(S10)
$CH_3^* + H^* \rightarrow CH_4^*$	(S11)
$CH_4^* \rightarrow CH_4$	(S12)

When CO* on the surface of TiO_2 continued to obtain electrons and protons forming COH*, CH₄ generated; otherwise, CO generated.he faster those electrons and H⁺ were transferred, the higher CH₄ yield.

Figure S16. CH₄/CO accumulation and yield of the Pt-TiO₂ catalyst at -80 kPa and 0

kPa.

Figure S17. CH₄ accumulation and yield from photocatalytic CO₂ reduction on Pt–TiO₂ catalysts at -80 kPa in pure CO₂. CH₄ selectivity were 94.71%, 94.18%, 90.49% with 100%, 20% and 5% Pt-TiO₂, respectively. For all catalysts, the loading was 20 mg.

References

- Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao and Y. Lin, *Appl. Catal.*, *B*, 2019, 240, 234-240.
- 2. J. Fu, K. Jiang, X. Qiu, J. Yu and M. Liu, Mater. Today, 2020, 32, 222-243.