Supplementary Information

High–efficiency photoreduction of CO\(_2\) in low vacuum

Yuxin Liu,a,e Shuai Kang,ªa,b Tinghua Li,c Zhuofeng Hu,d Yiwei Ren,a,b Ziwei Pan,b Xie Fu,a,b Liang Wang,a,b Shuanglong Feng,a,b Jinling Luo,b Lei Feng,a,b and Wenqiang Luªa,b

ª Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

ª Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China

c Technical Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China

d School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China

e University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: Shuai Kang (kangshuai@cigit.ac.cn); Zhuofeng Hu (huzhf8@mail.sysu.edu.cn); Wenqiang Lu (wqlu@cigit.ac.cn)
Table of Contents

Figure S1. Photocatalytic CO₂ reduction system with online gas analysis. 3
Figure S2. Absolute gas pressure vs. CO₂ content and the approximate H₂O content. 4
Figure S3. Schematic of the reactor. 5
Figure S4. Experimental procedure in this work. 6
Figure S5. Temperature of the titanium oxide covered glass slide during irradiation. 7
Figure S6. CH₄ yield at 390 K with and without irradiation. 8
Figure S7. Physical characterizations of the commercial α-TiO₂. 9
Figure S8. Gas chromatography curves of CH₄ in different CO₂ ratios. 10
Figure S9. Calibration curves of the gas chromatography of CH₄ at different pressures. 11
Figure S10. Gas chromatography curves of CH₄ with and without catalysts. 12
Figure S11. CH₄ yield in different vacuum degrees. 13
Table S1. CH₄ selectivity at various vacuum degrees. 14
Table S2. CO production rate at different gas pressure and CO₂ content. 14
Figure S12. Binding energy evolution of the TiO₂ photocatalyst upon long-term stability test. 15
Figure S13. High-resolution XPS spectra of O 1s and C 1s on TiO₂ before stability test. 16
Figure S14. High-resolution XPS spectra of O 1s after running 3.5h and 24 h. 17
Table S3. Peak fitting parameters of C 1s.. 18
Figure S15. Mechanism of CO₂ photoreduction. 19
Figure S16. CH₄/CO accumulation and yield of the Pt-TiO₂ catalyst at –80 kPa and 0 kPa. 20
Figure S17. CH₄ accumulation and yield on Pt–TiO₂ catalysts at –80 kPa in pure CO₂. 21
References 22
Figure S1. Photocatalytic CO₂ reduction system with online gas analysis. (a) Schematic and (b) photograph.
The total gas pressure:

\[P_{\text{total}} = P_{\text{CO}_2} + P_{\text{H}_2\text{O}} \]

According to the Ideal Gas Law:

\[P = \frac{nRT}{V} \]

Where \(P \) is the absolute pressure, \(V \) is the volume, \(T \) is the absolute temperature (T). \(n \) is the number of moles, \(R \) is the universal gas constant, 8.3145 J/mol K.

In this system, \(R \), \(T \) and \(V \) is constant.

If we set,

\[a = \frac{RT}{V} \]

Then,

\[P = a \times n \]

Thus,

\[P_{\text{total}} = P_{\text{CO}_2} + P_{\text{H}_2\text{O}} = a \times n_{\text{CO}_2} + a \times n_{\text{H}_2\text{O}} \]

\[n_{\text{CO}_2} = \frac{1}{a} \times P_{\text{total}} - n_{\text{H}_2\text{O}} \]

From the linear correlation between the absolute gas pressure and \(\text{CO}_2 \) content in Figure S2, the \(\text{H}_2\text{O} \) content in the system is constant and approximately 0.16 mmol.

Figure S2. Absolute gas pressure vs. \(\text{CO}_2 \) content and the approximate \(\text{H}_2\text{O} \) content.
Figure S3. Schematic of the reactor.
Figure S4. Experimental procedure in this work.
Figure S5. Temperature of the titanium oxide covered glass slide during irradiation.
Figure S6. CH₄ yield at 390 K with and without irradiation.
Figure S7. Physical characterizations of the commercial α-TiO₂. (a) XRD pattern of the commercial α-TiO₂. (101) is the most stable lattice plane. (b) Absorption spectrum of the commercial α-TiO₂ covered glass slide. Inset is the Mott-Schottky curve. (c-d) TEM images. Inset is the EDS spectrum. (e) HAADF image and the corresponding elemental mappings of O and Ti.
Figure S8. Gas chromatography curves of CH$_4$ in different CO$_2$ ratios.
Figure S9. Calibration curves of the gas chromatography of CH₄ at different pressures.
Figure S10. Gas chromatography curves of CH$_4$ with and without catalysts.
Figure S11. CH₄ yield in different vacuum degrees.
Table S1. CH₄ selectivity at various vacuum degrees.

<table>
<thead>
<tr>
<th>Unit (%)</th>
<th>10% CO₂</th>
<th>70% CO₂</th>
<th>100% CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80 kPa</td>
<td>68.52</td>
<td>85</td>
<td>85.89</td>
</tr>
<tr>
<td>-60 kPa</td>
<td>64.89</td>
<td>73.5</td>
<td>89.368</td>
</tr>
<tr>
<td>-40 kPa</td>
<td>23.894</td>
<td>60.14</td>
<td>95.734</td>
</tr>
<tr>
<td>-20 kPa</td>
<td>37.93</td>
<td>95.19</td>
<td>53.987</td>
</tr>
<tr>
<td>0 kPa</td>
<td>46.85</td>
<td>--</td>
<td>95.903</td>
</tr>
</tbody>
</table>

The selectivity of CH₄ in the following discussion is calculated according to the following equation.

\[
\text{Selectivity}_{CH_4} = \frac{n_{CH_4}}{n_{CH_4} + n_{CO}}
\]

where \(n \) is the mole number.

Table S2. CO production rate at different gas pressure and CO₂ content.

<table>
<thead>
<tr>
<th>Unit (nmol g⁻¹ h⁻¹)</th>
<th>10% CO₂</th>
<th>70% CO₂</th>
<th>100% CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80 kPa</td>
<td>180.5</td>
<td>90.63</td>
<td>103.35</td>
</tr>
<tr>
<td>-60 kPa</td>
<td>244.97</td>
<td>139.33</td>
<td>33.74</td>
</tr>
<tr>
<td>-40 kPa</td>
<td>51.12</td>
<td>254.33</td>
<td>15.03</td>
</tr>
<tr>
<td>-20 kPa</td>
<td>335.83</td>
<td>6.23</td>
<td>29.84</td>
</tr>
<tr>
<td>0</td>
<td>5.23</td>
<td>6.01</td>
<td>9.34</td>
</tr>
</tbody>
</table>
Figure S12. Binding energy evolution of the TiO$_2$ photocatalyst upon long-term stability test. (a) XPS survey spectra and (b) high-resolution XPS spectra of Ti 2p.
Figure S13. High resolution XPS spectra of O 1s and C 1s on commercial TiO$_2$ before stability test.
Figure S14. High-resolution XPS spectra of O 1s after running 3.5h and 24 h.
Table S3. Peak fitting parameters of C 1s.

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Peak BE</th>
<th>FWHM eV</th>
<th>Area (P) CPS.eV</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before test</td>
<td>C-C</td>
<td>284.4</td>
<td>1.33</td>
<td>10197.72</td>
<td>74.94</td>
</tr>
<tr>
<td></td>
<td>C-O</td>
<td>285</td>
<td>1.32</td>
<td>2732.26</td>
<td>20.08</td>
</tr>
<tr>
<td></td>
<td>O=C-O</td>
<td>288.1</td>
<td>1.81</td>
<td>678.06</td>
<td>4.98</td>
</tr>
<tr>
<td>3.5h at -80kPa</td>
<td>C-C</td>
<td>284.4</td>
<td>1.18</td>
<td>18375.97</td>
<td>80.83</td>
</tr>
<tr>
<td></td>
<td>C-O</td>
<td>285</td>
<td>1.53</td>
<td>3968.54</td>
<td>17.46</td>
</tr>
<tr>
<td></td>
<td>O=C-O</td>
<td>288.1</td>
<td>3.37</td>
<td>389.35</td>
<td>1.71</td>
</tr>
<tr>
<td>3.5 h at 0kPa</td>
<td>C-C</td>
<td>284.4</td>
<td>1.14</td>
<td>15922.5</td>
<td>85.19</td>
</tr>
<tr>
<td></td>
<td>C-O</td>
<td>285</td>
<td>1.84</td>
<td>1372.62</td>
<td>7.34</td>
</tr>
<tr>
<td></td>
<td>O=C-O</td>
<td>288.1</td>
<td>1.17</td>
<td>339.88</td>
<td>1.82</td>
</tr>
<tr>
<td>24 h at -80kPa</td>
<td>C-C</td>
<td>284.4</td>
<td>1.32</td>
<td>8876.62</td>
<td>79.25</td>
</tr>
<tr>
<td></td>
<td>C-O</td>
<td>285</td>
<td>1.45</td>
<td>1730.15</td>
<td>15.45</td>
</tr>
<tr>
<td></td>
<td>O=C-O</td>
<td>288.1</td>
<td>1.31</td>
<td>507.98</td>
<td>4.54</td>
</tr>
<tr>
<td>24 h at 0kPa</td>
<td>C-C</td>
<td>284.4</td>
<td>1.2</td>
<td>10383.1</td>
<td>78.41</td>
</tr>
<tr>
<td></td>
<td>C-O</td>
<td>285</td>
<td>1.35</td>
<td>1970.19</td>
<td>14.88</td>
</tr>
<tr>
<td></td>
<td>O=C-O</td>
<td>288.1</td>
<td>3.37</td>
<td>946.72</td>
<td>7.15</td>
</tr>
</tbody>
</table>
Figure S15. Mechanism of CO$_2$ photoreduction and the fundamental steps of CO$_2$ photoreduction in two pathways.

Generally, there are two pathways of CO$_2$ photoreduction. One is the formation of CO (following the equations S3–S5), the other is the formation of CH$_4$ (following the equations S3–S4, S6–S12). 1,2

\[
\begin{align*}
\text{Pathway 1: CO formation} \\
\text{CO}_2 + 2\text{H}^\cdot & \rightarrow \text{HCOOH}^* \quad \text{(S3)} \\
\text{HCOOH}^* + \text{H}^\cdot & \rightarrow \text{CO}^* + \text{H}_2\text{O} \quad \text{(S4)} \\
\text{Pathway 2: CH}_4 \text{ formation} \\
\text{CO}^* + \text{H}^\cdot & \rightarrow \text{COH}^* \quad \text{(S5)} \\
\text{COH}^* + \text{H}^\cdot & \rightarrow \text{C}^* + \text{H}_2\text{O} \quad \text{(S6)} \\
\text{C}^* + \text{H}^\cdot & \rightarrow \text{CH}^* \quad \text{(S7)} \\
\text{CH}^* + \text{H}^\cdot & \rightarrow \text{CH}_2^* \quad \text{(S8)} \\
\text{CH}_2^* + \text{H}^\cdot & \rightarrow \text{CH}_3^* \quad \text{(S9)} \\
\text{CH}_3^* + \text{H}^\cdot & \rightarrow \text{CH}_4^* \quad \text{(S10)} \\
\text{CH}_4^* & \rightarrow \text{CH}_4 \quad \text{(S11)} \\
\end{align*}
\]

When CO* on the surface of TiO$_2$ continued to obtain electrons and protons forming COH*, CH$_4$ generated; otherwise, CO generated. The faster those electrons and H$^+$ were transferred, the higher CH$_4$ yield.
Figure S16. CH₄/CO accumulation and yield of the Pt-TiO₂ catalyst at –80 kPa and 0 kPa.
Figure S17. CH$_4$ accumulation and yield from photocatalytic CO$_2$ reduction on Pt–TiO$_2$ catalysts at −80 kPa in pure CO$_2$. CH$_4$ selectivity were 94.71%, 94.18%, 90.49% with 100%, 20% and 5% Pt-TiO$_2$, respectively. For all catalysts, the loading was 20 mg.
References
