Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

SUPPLEMENTARY INFORMATION

Anion---anion interaction within Ch(CH₃)X₄- (Ch = S, Se, Te; X=Cl, Br, I) dimers stabilized by chalcogen bonds

Rafał Wysokiński

CSD refcod	Ch…X [Å]	structures
YALRIM	Te…F 3.208	
WAMNON	Te…F 3.231	1201 X201
JUCDAM	Te…Cl 3.241	

CITMAT	Te…Cl 3.423	
WUTJOK	Te…Cl 3.597	
CIFVOD	Te…Cl 3.615	2.015 2.015 2.015

CUCGOW	Te…Cl 3.619	
ELAVAP	Te…Br 3.600	
CIFVUJ	Te…Br 3.684	

CIFWAQ	Te…I 3.827	ART ART
MTEMTE	Te…I 3.880	
ECOQIY	Te…I 3.890	

Fig. S1. Examples drawn from the CSD database.

Monomers

	vacuum	water
S(CH ₃)Cl ₄ -	0.079 0.079 0.079 0.079 0.079	0.080 0.079 0.079
Se(CH ₃)Cl ₄ -	0.073 0.073 0.073 0.073	0.073 0.073 0.073 0.073

Fig. S2. AIM molecular diagrams of MP2/aug-cc-pVDZ optimized complexes. Green dots represent bond critical points. Numbers refers to electron densities at BCPs (in au)

Table S1. Relative difference in dimers total energy (kcal/mol)^a in vacuum and water solvent

	water	vacuum
S(CH ₃)Cl ₄ -	0.00	-
Se(CH ₃)Cl ₄ -	0.00	150.24 (147.98)
Te(CH ₃)Cl ₄ -	0.00	143.83 (141.04)
S(CH ₃)Br ₄ -	0.00	144.05 (140.86)
Se(CH ₃)Br ₄ -	0.00	141.92 (140.15)
Te(CH ₃)Br ₄ -	0.00	136.43 (134.40)
S(CH ₃)I ₄ -	0.00	130.90 (129.52)
Se(CH ₃)I ₄ -	0.00	129.61 (128.01)
Te(CH ₃)I ₄ -	0.00	126.35 (123.65)

^a Gibbs free energy differences in parentheses.

Tab. S2. AIM descriptors of the calculated complexes in vacuum. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$ and total electron energy H and potential electron density energy V as well as kinetic electron density energy G, were obtained at the MP2/ aug-cc-pVDZ level. Data in atomic units.

	interaction	ρ	$\nabla^2 ho$	Н	V	G	
	vacuum						
S(CH ₃)Cl ₄ -	S-Cl	0.079	+0.067	-0.023	-0.063	+0.040	
	S-C	0.178	-0.314	-0.129	-0.180	+0.051	
Se(CH ₃)Cl ₄ -	Se-Cl	0.073	+0.066	-0.021	-0.059	+0.038	
	Se-C	0.155	-0.232	-0.106	-0.154	+0.048	
Te(CH ₃)Cl ₄ -	Te-Cl	0.063	+0.080	-0.017	-0.053	+0.036	
	Te-C	0.123	-0.043	-0.070	-0.129	+0.059	
S(CH ₃)Br ₄ -	S-Br	0.066	+0.062	-0.015	-0.046	+0.031	

	S-C	0.174	-0.299	-0.125	-0.175	+0.050
Se(CH ₃)Br ₄ -	Se-Br	0.063	+0.051	-0.015	-0.043	+0.028
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Se-C	0.151	-0.215	-0.102	-0.150	+0.048
Te(CH ₃ )Br ₄ -	Te-Br	0.056	+0.051	-0.014	-0.040	+0.026
-(- 5) 4	Te-C	0.121	-0.040	-0.068	-0.125	+0.058
S(CH ₃ )I ₄ -	S-I	0.051	+0.051	-0.009	-0.031	+0.022
	S-C	0.169	-0.279	-0.119	-0.169	+0.050
Se(CH ₃ )I ₄ -	Se-I	0.051	+0.040	-0.010	-0.030	+0.020
	Se-C	0.146	-0.193	-0.096	-0.144	+0.048
Te(CH ₃ )I ₄ -	Te-I	0.047	+0.031	-0.010	-0.028	+0.018
	Te-C	0.117	-0.032	-0.064	-0.120	+0.056
			W	ater		
S(CH ₃ )Cl ₄ -	S-Cl	0.080	+0.067	-0.024	-0.064	+0.040
	S-C	0.177	-0.303	-0.127	-0.179	+0.052
Se(CH ₃ )Cl ₄ -	Se-Cl	0.074	+0.066	-0.021	-0.059	+0.038
	Se-C	0.155	-0.234	-0.105	-0.152	+0.047
Te(CH ₃ )Cl ₄ -	Te-Cl	0.063	+0.080	-0.016	-0.052	+0.036
	Te-C	0.124	-0.054	-0.071	-0.128	+0.057
S(CH ₃ )Br ₄ -	S-Br	0.067	+0.061	-0.016	-0.047	+0.031
	S-C	0.173	-0.290	-0.123	-0.174	+0.051
Se(CH ₃ )Br ₄ -	Se-Br	0.064	+0.051	-0.016	-0.044	+0.028
	Se-C	0.151	-0.218	-0.101	-0.148	+0.047
Te(CH ₃ )Br ₄ -	Te-Br	0.056	+0.052	-0.013	-0.040	+0.026
	Te-C	0.121	-0.049	-0.068	-0.125	+0.056
S(CH ₃ )I ₄ -	S-I	0.052	+0.051	-0.009	-0.032	+0.022
	S-C	0.168	-0.274	-0.118	-0.168	+0.050
Se(CH ₃ )I ₄ -	Se-I	0.051	+0.040	-0.010	-0.030	+0.020
	Se-C	0.146	-0.197	-0.096	-0.143	+0.047
Te(CH ₃ )I ₄ -	Te-I	0.047	+0.031	-0.010	-0.028	+0.018
	Te-C	0.117	-0.039	-0.065	-0.120	+0.055

	vacuum	water
S(CH ₃ )Cl ₄ -	-	0.079 0.079 0.080 0.080 0.011 0.003 0.003 0.080 0.011 0.003 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.079 0.079 0.079 0.079 0.079 0.079 0.080 0.0177 0.080 0.080 0.011 0.003 0.080 0.011 0.003 0.011 0.003 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0





Fig. S3. AIM molecular diagrams of MP2/aug-cc-pVDZ optimized complexes. Green dots represent bond critical points. Numbers refers to electron densities at BCPs (in au)

Tab. S3. AIM descriptors of the calculated complexes in acetone. Bond critical point (BCP) properties: electron density  $\rho$ , Laplacian of electron density  $\nabla^2 \rho$  and total electron energy H and potential electron density energy V as well as kinetic electron density energy G, were obtained at the MP2/ aug-cc-pVDZ level. Data in atomic units.

	interaction	ρ	$\nabla^2 \rho$	Н	V	G
	vacuum					
(S(CH ₃ )Cl ₄ -) ₂	-	-	_	-	-	-
(Se(CH ₃ )Cl ₄ ) ₂	Se-Cl	0.078	+0.058	-0.025	-0.065	+0.040
	Se-C	0.154	-0.228	-0.105	-0.153	+0.048
	Se…Cl	0.009	+0.027	+0.001	-0.005	+0.006
	Cl…Cl	0.007	+0.019	+0.000	-0.004	+0.004
(Te(CH ₃ )Cl ₄ -) ₂	Te-Cl	0.065	+0.080	+0.018	-0.055	+0.038
	Te-C	0.122	-0.037	+0.069	-0.128	+0.059
	Te…Cl	0.009	+0.023	+0.001	-0.004	+0.005
	Cl···Cl	0.005	+0.014	+0.000	-0.003	+0.003
	S-Br	0.069	+0.059	-0.017	-0.049	+0.032
	S-C	0.174	-0.302	-0.125	-0.174	+0.049
$(S(CH_3)Br_4)_2$	S…Br	0.012	+0.034	+0.001	-0.006	+0.007
	Br…Br	0.002	+0.005	+0.000	-0.001	+0.001
	Se-Br	0.066	+0.048	-0.017	-0.046	+0.029
	Se-C	0.150	-0.211	-0.101	-0.150	+0.048
$(Se(CH_3)Br_4)_2$	Se…Br	0.013	+0.034	+0.001	-0.006	+0.007
	Br···Br	0.002	+0.004	+0.000	-0.001	+0.001
	Te-Br	0.057	+0.050	-0.014	-0.041	+0.027
	Te-C	0.119	-0.033	-0.066	-0.124	+0.058
$(Te(CH_3)Br_4)_2$	Te…Br	0.012	+0.027	+0.001	-0.005	+0.006
	Br···Br	0.001	+0.002	+0.000	-0.000	+0.000
(S(CH ₃ )I ₄ -) ₂	S-I	0.051	+0.053	-0.009	-0.031	+0.022
	S-C	0.169	-0.282	-0.119	-0.168	+0.049
	S…I	0.014	+0.034	+0.001	-0.007	+0.008
	I…I	0.004	+0.008	+0.000	-0.001	+0.002
(Se(CH ₃ )I ₄ -) ₂	Se-I	0.052	+0.040	-0.011	-0.031	+0.021
	Se-C	0.145	-0.185	-0.095	-0.144	+0.049
	Se…I	0.015	+0.034	+0.001	-0.007	+0.008
	I…I	0.003	+0.006	+0.000	-0.001	+0.001
(Te(CH ₃ )I ₄ -) ₂	Te-I	0.047	+0.031	-0.010	-0.028	+0.018
	Te-C	0.115	-0.023	-0.062	-0.119	+0.056
	Те…І	0.014	+0.028	+0.000	-0.006	+0.007
	I…I	0.002	+0.004	+0.000	-0.001	+0.001
			wa	lter		
(S(CH ₃ )Cl ₄ -) ₂	S-Cl	0.080	+0.069	-0.023	-0.064	+0.041
	S-C	0.177	-0.307	-0.128	-0.179	+0.051
	S…Cl	0.011	+0.034	+0.001	-0.006	+0.007
	Cl…Cl	0.003	+0.007	+0.000	-0.001	+0.002
(Se(CH ₃ )Cl ₄ -) ₂	Se-Cl	0.075	+0.064	-0.022	-0.060	+0.038
	Se-C	0.155	-0.235	-0.106	-0.153	+0.047
	Se…Cl	0.013	+0.037	+0.001	-0.007	+0.008
	Cl…Cl	0.003	+0.008	+0.000	-0.001	+0.002

(Te(CH ₃ )Cl ₄ -) ₂	Te-Cl	0.063	+0.080	-0.017	-0.054	+0.037
	Te-C	0.124	-0.054	-0.071	-0.129	+0.058
	Te…Cl	0.008	+0.021	+0.001	-0.004	+0.005
	Cl…Cl	0.006	+0.016	+0.000	-0.003	+0.004
	Те…Те	0.009	+0.025	+0.001	-0.004	+0.005
	S-Br	0.067	+0.063	-0.016	-0.047	+0.031
(S(CII))Dr)	S-C	0.173	-0.295	-0.124	-0.174	+0.050
$(S(CH_3)Br_4)_2$	S…Br	0.013	+0.035	+0.001	-0.007	+0.008
	Br…Br	0.004	+0.008	+0.000	-0.002	+0.002
	Se-Br	0.063	+0.051	-0.015	-0.044	+0.028
$(\mathbf{S}_{\alpha}(\mathbf{C}\mathbf{U})\mathbf{D}_{\mathbf{H}})$	Se-C	0.151	-0.218	-0.102	-0.149	+0.047
$(Se(C \Pi_3)D\Gamma_4)_2$	Se…Br	0.014	+0.037	+0.001	-0.007	+0.008
	Br…Br	0.004	+0.008	+0.000	-0.002	+0.002
	Te-Br	0.058	+0.050	-0.015	-0.042	+0.027
(Te(CH ₃ )Br ₄ -) ₂	Te-C	0.121	-0.047	-0.068	-0.125	+0.057
	Te…Br	0.013	+0.029	+0.001	-0.006	+0.007
	Br…Br	0.003	+0.008	+0.000	-0.001	+0.002
(S(CH ₃ )I ₄ -) ₂	S-I	0.051	+0.053	-0.010	-0.031	+0.022
	S-C	0.169	-0.279	-0.119	-0.168	+0.049
	S…I	0.013	+0.033	+0.001	-0.006	+0.007
	I…I	0.004	+0.008	+0.000	-0.001	+0.002
(Se(CH ₃ )I ₄ ⁻ ) ₂	Se-I	0.051	+0.041	+0.010	-0.030	+0.020
	Se-C	0.146	-0.193	+0.096	-0.143	+0.048
	Se…I	0.015	+0.033	-0.001	-0.007	+0.008
	I…I	0.004	+0.008	-0.000	-0.001	+0.002
$(Te(CH_3)I_4)_2$	Te-I	0.048	+0.030	+0.010	-0.028	+0.018
	Te-C	0.117	-0.033	+0.064	-0.120	+0.056
	Те…І	0.014	+0.029	-0.000	-0.006	+0.007
	I…I	0.004	+0.007	-0.000	-0.001	+0.002