Study of optical emission spectroscopy in dual frequency synchronized pulsed capacitively coupled discharges with DC bias at low-pressure in $Ar/O_2/C_4F_8$ plasma etching process

B. B. SAHU, K. NAKANE, K. ISHIKAWA, M. SEKINE, T. TSUTSUMI, T. GOHIRA, Y. OHYA, O. NORIYASU AND M. HORI

Plan of the presentation

- Motivation for the present OES study
- Formulation of the present work
 - $\checkmark\,$ Determination of deviation of plasma from LTE
 - ✓ Mathematical formulation to evaluate $T_{\rm e}$
 - $\checkmark\,$ Determination of $\rm T_{e}$ and validity of corona balance
- Computations of electron impact excitation rate coefficients
- Experimental results and discussion (T_e evaluation)
 - ✓ Boltzmann Plot: Excitation temperature: T_{ex}
 - \checkmark Modified Boltzmann equation: Electron temperature: T_e
 - \checkmark Variation of T_e with RF pulse condition
- Determination of plasma density ($n_{\rm e}$ evaluation)
 - Formulation of equation for n_e
 - Variation of n_e with RF pulse condition
 - Validation of our result by RF compensated Langmuir probe
- Summary/Conclusion
 - ✓ Scientific aspects

Motivation for the present OES study

- OES is a non-intrusive diagnostic method. One can get information about plasma parameters, excited species, etc.
- Many reported works have used the mixed gas of Ar/He/Xe/Kr and the approach of trace of rare gas (TRG) for the estimation of electron temperature (T_e) from the ratio of line intensities during the OES diagnostic. However, in the actual plasma process experiment the experimental gas contains no mixed gas of Ar/He/Ne/Xe.

Sometimes, the partial pressure of mixed gases become considerable with respect to the experimental gas for the etching or deposition process.

The plasma condition and hence, the plasma parameters would be different during the plasma diagnostics and actual plasma process.

PRE 60, 6016 (1999); J. Vac. Sci. Technol. A. 20, 555 (2002)

- In other method, researchers have used kinetic approach using collisional-radiative (CR) model for low-pressure $N_2^{[2]}$ plasmas and Ar/Ne^[3] plasmas, and solve the rate balance equation using collisional-radiative (CR) model to solve for T_e and n_e .
- Note that the rate or excitation coefficients involved in the rate balance equations ^[2-4] used for the estimation of T_e and n_e are function of the gas temperature T_g . However, the evaluation of T_g at low-pressure plasma is not straight forward, which needs N_2 gas mixing for getting the N_2 emissions^[5] or additional methods like laser-induced fluorescence (LIF)^[6] and Fabry–Perot Interferometry^[7].
- Some studies in Ar/Ne plasmas, the line intensity ratios are used to determine the value of $\rm T_{\rm e}.$
- Thus, at low-pressure, there is no straight forward and simplified method using OES of Ar containing plasmas to determine T_e in non-equilibrium plasmas.

[2] Plasma Sources Sci. Technol. 17, 024002 (2008); [3] J. Phys. D: Appl. Phys. 42, 025203 (2009);
[4] Resource Eff. Technol. 3, 187 (2017), [5] J. Phys. D: Appl. Phys. 40, 1022 (2007); [6] Plasma Sources Sci.
Technol. 23 023001 (2014) review paper by Bruggeman. [7] B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, "Fiber Fabry–Pérot Interferometer for Measurement of Gas Pressure and Temperature," J. Lightwave Technol. 34, 4920-4925 (2016)

- Considerable work in the literature has also been done at very high pressures and/or atmospheric pressures. Such discharges, assume the condition of partial local thermal equilibrium (LTE) that approximate the electron excitation temperature $T_{ex} \sim T_e$ using Boltmann plot.^[8-10]
- At low-pressure and low-to-moderate density plasmas, the excited atomic/ionic densities are not in Boltzmann equilibrium; that is, excitation and de-excitation are not controlled by collisions with electrons. In such cases, the use of Boltzmann plot only provides T_{ex} and not the T_{e} .
- In glow discharges, at low-pressure with low-neutral density (~ 10^{13} - 10^{15} cm⁻³) and low-to moderate electron density (~ 10^{8} - 10^{12} cm⁻³), multi-step ionization would be important. Accordingly, with increasing electron density (n_e), multi-step excitation of the metastable level 1s₅ via the excited Ar and resonant states 1s₂, 1s₃ and 1s₄ could be dominant [10]. However, at low electron densities and pressures (a few Pa), the formation of 1s₅ can predominantly occurs from the ground state Ar by direct excitation.

[**8**] Surf. Coat. Technol. 364, 63 (2019); [9] J. Anal. At. Spectrom. 32, 782 (2017); [10] POP 17, 103501 (2010) (Prof. Choe's paper), [11] J. Phys. D: Appl. Phys. 35, 1777 (2002)

- Earlier plasma density measurements^[12, 13] by surface wave probe (in our center's work) have shown an overall plasma/electron density (n_e) variation in the range of ~ 10^{10} - 10^{11} cm⁻³ at a low discharge power.
- Due to the low electron densities ~ 10¹⁰ -10¹¹ cm⁻³ (our center's work), it is possible that direct excitation from the ground state along with radiative decay can be the dominant mechanisms.
- Thus, the direct excitation^[14] mechanism will control the generation and destruction of excited levels, hence, a corona balance could drive the plasma kinetics in our experiments.
- We need to validate the corona balance formalism proposed by Fujimoto^[15] relevant to our experiment and plasma parameters.
- Thus, T_e can be determined using Ar emissions straight forward from the OES emission lines. Also, we can determine electron density by combining Saha and Maxwell-Boltzmann equations.
- Simultaneous determination of both T_e and n_e will provide better insight of the etching processes along with the capability of plasma sources.

[12] Jpn. J. Appl. Phys. 55, 080309 (2016). [13] J. Phys. D. 50, 155201 (2017);
[14] Phys. Rep. 191, 109 (1990); [15] J. Phys. Soc. Japan 47, 273 (1979).

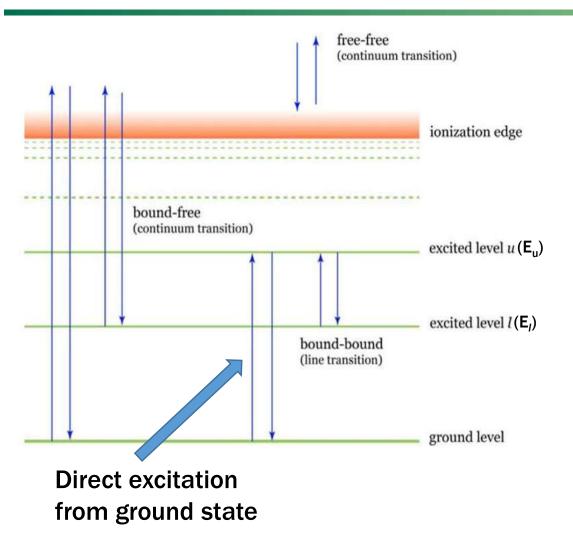
Formulation of the present work

- Determination of deviation of plasma from LTE
- Mathematical formulation to evaluate $T_{\rm e}$
- Determination of T_e and validity of corona balance

Description of macroscopic/microscopic state of plasma 9

- Velocity distribution:
- The excited state distribution:
- The relation between the densities of ionic states: by Saha Equation
- The distribution of the photon gas:
- ✓ In thermodynamic equilibrium
 - □ All these distributions are characterized by the same temperature.
 - **Every detailed microscopic process is balanced by its inverse process.**

Various microscopic pro	cesses occur in	plasmas	during process
-------------------------	-----------------	---------	----------------


Nature of balance	Reaction scenario in the plasmas	Physical situation
Maxwell balance	$X + Y \iff X + Y$ $E_X + E_Y = (E_X - \Delta E) + (E_Y + \Delta E)$	Kinetic energy exchange (ΔE) and conservation
Boltzmann balance	$X + A_l + E_{\text{internal energy}} \iff X + A_u$ $A_l = \text{atom in a lower state } I$	De-excitation $\leftarrow \rightarrow$ Excitation
Saha balance	$ \begin{array}{c c} X + A_p + \left E_p \right & \longleftrightarrow & X + A_l^+ + e \\ \textbf{Ep = ionization energy of atom} \\ \textbf{A_p = atom in state p} \end{array} $	Recombination $\leftarrow \rightarrow$ ionization
Plank balance	$\begin{array}{cccc} A_{u} & \leftrightarrow & A_{l} + h \nu \\ A_{u} + h \nu & \leftrightarrow & A_{l} + 2h \nu \end{array}$	Absorption $\leftarrow \rightarrow$ Spontaneous emission Absorption $\leftarrow \rightarrow$ Stimulated emission

by Maxwell Equation

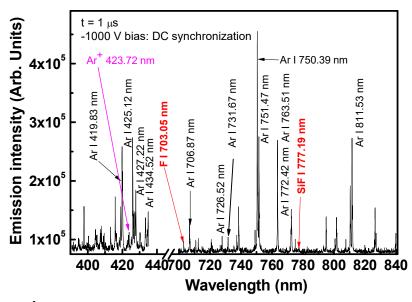
by Boltzmann Equation

by Planck's radiation law.

Formulation of work

Absorption: Upper energy level: $h v + E_{l} \rightarrow E_{u}$

Spontaneous Emission: From upper energy level: $E_u \rightarrow E_l + h v$


Stimulated Emission: From upper energy level: $h v + E_u \rightarrow E_l + 2 h v$

To apply the conventional Boltzmann plot,

we consider (assume) the upper excited energy levels of the selected (observed in our experiments) transition are in LTE. This suggests that the population density of such energy levels follow the Boltzmann equation.

OES diagnostics: Typical spectrum in our discharge

Observed dominant emissions from Ar lines

The excitation temperature (T_{ex}) can give the first estimation of T_e in the low pressure Ar rich/O₂/C₄F₈ plasma.

 $T_{ex} \text{ can be determined as}$ $ln\left(\frac{g_u \cdot A_{ul}}{I_{ul} \cdot \lambda_{ul}}\right) = \frac{E_u}{k_B T_{ex}} + \text{ Constant}$ $\Rightarrow \frac{E_u}{k_B T_{ex}} = ln\left(\frac{g_u \cdot A_{ul}}{I_{ul} \cdot \lambda_{ul}}\right) + C_1$ (1)

where

- I_{ul} = Emission intensity (in arb. Unit) of the emission between the upper energy levels u and the lower energy level I
- g_u = Statistical weight of emitting level u relevant to the transition $u \rightarrow I$
- A_{ul} = transition probability in s⁻¹ corresponding to the radiative emissions
- E_u = Excitation energy (eV) of upper level u
- $k_{\rm B}$ = Boltzmann constant
- $C_1 = Constant$

[8] Surf. Coat. Technol. 364, 63 (2019)[9] J. Anal. At. Spectrom. 32, 782 (2017)

Spectrum acquired for the operation condition: With synchronization (time t = 1 μ s) DC bias = -300 V (RF on) = -1000 V (RF off)

Table I: Spectroscopic data and parameters

$\lambda_{ m ul}$ (nm)	E _u (eV)	g _u	A _{ul} (10 ⁷ s ⁻¹)	Transition levels $E_u \rightarrow E_l$	p_{u}	f _{lu}
419.83	14.58	1	0.257	$5p[1/2]_0 ightarrow 4s[3/2]_1^0$	3.395	2.26 x 10 ⁻³
425.12	14.46	3	0.0111	$5p[1/2]_1 \rightarrow 4s[3/2]_2^0$	3.234	1.81 x 10 -4
427.22	14.52	3	0.0797	$5p[3/2]_1 \rightarrow 4s[3/2]_1^0$	3.312	2.18 x 10 ⁻³
434.52	14.66	3	0.0297	$5p'[3/2]_1 \rightarrow 4s'[1/2]_1^0$	3.516	8.41 x 10 ⁻⁴
706.87	14.84	5	0.20	$6s[3/2]_1^0 \rightarrow 4p[5/2]_2$	3.845	1.35 x 10 ⁻²
726.52	14.86	3	0.017	$4d[3/2]_1^0 \rightarrow 4p[3/2]_1$	3.887	4.99 x 10 ⁻²
731.67	15.02	3	0.096	$6s'[1/2]_1^0 \rightarrow 4p'[1/2]_1$	4.287	3.37 x 10 ⁻²
750.39	13.48	1	4.450	$4p'[1/2]_0 ightarrow 4s'[1/2]_1^0$	2.442	1.25 x 10 ⁻¹
751.47	13.27	1	4.020	$4p[1/2]_0 \rightarrow 4s[3/2]_1^0$	2.337	1.14 x 10 ⁻¹
763.51	13.17	5	2.452	$4p[3/2]_2 \rightarrow 4s[3/2]_2^0$	2.291	2.14 x 10 ⁻¹
772.42	13.33	3	1.170	$4p'[1/2]_1 ightarrow 4s'[1/2]_0^0$	2.366	3.14 x 10 ⁻¹
811.53	13.08	7	3.310	$4p[5/2]_3 \rightarrow 4s[3/2]_2^0$	2.253	4.58 x 10 ⁻¹

The main sources of error using Eqn. (1) for T_{ex} estimation arise from the inaccurate A_{lu} and acquired emission intensities I_{lu} . However, the use of logarithmic operation on the lhs shrinks the extent of error. As an example: An error of 15 % in the argument of Eqn. (1) shrinks to $\rightarrow 2$ % of error by the logarithmic operation

At low-pressure condition: The condition LTE is difficult to hold since the population density of excited (atom) states will not be in Boltzmann equilibrium.

The excitation and de-excitation process might not be crucially controlled by electronic collisions

 $T_{\rm ex}$ will be different from $T_{\rm e}$

Thus, the fitted lines satisfying the Boltzmann equilibrium will not follow/overlap the data points

Thus, there is departure/deviation of plasma from LTE

To know about the deviation of plasma from LTE and to determine T_e , we consider the formation of the effective principal quantum number $p_u^{[14]}$ for the excited states as

$$p_u = \sqrt{\frac{E_H}{E_{Ar} - E_u}}$$
(2)

[14] Phys. Rep. 191, 109 (1990);

 $E_{\rm H} = 13.6 \, {\rm eV}$, the Rydberg constant $E_{\rm Ar} = 15.76 \, {\rm eV}$, the ionization energy of atomic species of Ar $E_{\rm u} =$ Excitation energy (eV) of excited level u we further define the parameter $s_{\rm u}(p_{\rm u})$ $N(p_{\rm u})$

$$s_u(p_u) = \frac{N_u(p_u)}{N_u^s(p_u)}$$
 (3)

The **Saha** equation (or describes equilibrium) the degree of ionization for any gas in thermal equilibrium function of as а the temperature, density, and ionization energies of the atoms

 $N_{\rm u}(p_{\rm u})$ = population density of the excited state u

 $N_{\rm u}^{\rm s}(p_{\rm u})$ = population density of the excited state u in Saha Equilibrium

if $N_u(p_u) > N_u^s(p_u)$: $s_u(p_u) > 1$ When the excited states will be over populated, we can get this feature.

The density of energy level is larger than the value required to maintain Saha equilibrium.

The scenario suggests the plasma to be ionizing in nature

if $N_u(p_u)$, $N_u^s(p_u)$: $s_u(p_u) < 1$ \implies The scenario suggests the plasma can be of recombining in nature

- Note that the degree of ionization^[19] at a low-pressure in RF plasmas is very small ~ 10⁻⁶ 10⁻³ which corresponds to a very low ~ 10⁹ 10¹¹ cm⁻³.
- The plasmas with low-electron density would make the coalitional process less effective than those with high electron density. This suggests the dominance of radiative processes.
- In the case of non-equilibrium plasmas with corona balance^[14], there will be the balance between the populating and depopulating mechanism.
- The densities of excited states by the electron-impact excitation from the ground state can be termed as the populating mechanism, and the process of spontaneous emission can be thought as the depopulating mechanism.
- The corona balance process can be expressed as

$$n_e N_1 k_{1u}(p_u) = N_u(p_u) \sum_{u > l} A_{ul}$$
 (4)

 n_e = electron density; N_1 = Ground state population density $k_{1u}(p_u)$ = rate coefficient for electron impact excitation from the ground state 1 toexcited level u; $N_u(p_u)$ = population density of the excited state u

[19] Plasma Sources Sci. Technol. 10, 530 (2001)

• We consider an optical thin plasma in Eqn. (4) for all radiated emissions. The $N_u(p_u)$ can be determined for each relevant emission from level E_u

$$I_{ul} = \frac{h v_{ul}}{4\pi} A_{ul} N_u(p_u) L_{pl} \implies N_u(p_u) = \frac{4\pi}{h} \frac{\lambda_{ul}}{c} \frac{I_{ul}}{A_{ul}} \frac{1}{L_{pl}}$$
(5)

c = speed of light in vacuum;

 $u_{...} = (F_{...} - F_{...})/k_{-}T_{...}$

 L_{pl} = effective plasma length that emitted light radiation has to travel through

• We assume that the free electrons obey the Maxwellian EEDF so that we can express the rate coefficient $k_{1u}(p_u)$ for Ar as follows^[20,21]:

$$k_{1u}(p_u) = 8.68 \times 10^{-8} c_{1u} Z_{eff}^{-3} f_{lu} \times \frac{u_a^{3/2}}{u_{1u}} \xi_a(u_{1u}, \beta_{1u}) \frac{cm^3}{s} \quad (6)$$

$$Z_{eff} = effective charge/atomic number = 1 (for Ar^+ ion)$$

$$c_{1u} = a \text{ constant } \cong 1$$

$$f_{lu} = \text{Absorption oscillator strength for the transition } I \rightarrow u^{[22,23]}$$

$$u_a = 13.6 k_B T_e (eV)$$

$$\beta_{1u} = a \text{ constant} = 1 + [(Z_{eff}-1)/(Z_{eff}+1)] = 1$$

[20] H. W. Drawin, "Collision and Transport Cross Sections," Report EUR-CEA-FC-383, Association Euratom C.E.A., Fontenay-aux-Roses, France (1967). [21] R. D. Taylor, and A. W. Ali, J. Appl. Phys. 64, 89 (1988); [22] C. H. Corliss and J. B. Shumaker, Jr., J. Res. Natl. Bur. Stand. (U.S.), Sect. A **71**, 575–581 (1967); [23] J. Phys. B: At. Mol. Opt. Phys. 39, 2145 (2006).

• The function $\xi_a(u_{1u}, \beta_{1u})$ can be determined^[21] as

$$\xi_a(u_{1u},\beta_{1u}) = \frac{e^{-u_{1u}}}{1+u_{1u}} \cdot \left(\frac{1}{20+u_{1u}} + \ln\left\{1.25 \times (1+\frac{1}{u_{1u}})\right\}\right)$$
(7)

• Using equations (6) and (7) we can further define the magnitude for rate coefficient $k_{1u}(p_u)$ by electron-impact by a convenient and simpler expression with a functional dependence on T_e

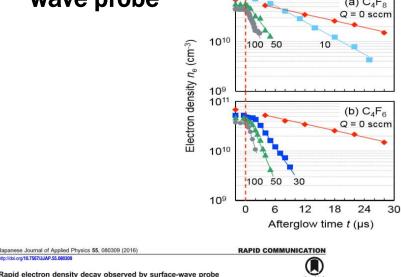
$$k_{1u}(p_u) = d_{1u}(p_u) \cdot e^{-E_{1u}/k_B T_e} \qquad \frac{Cm^3}{S}$$
(8)

• Where the parameter $d_{1u}(p_u)$ is given by

$$d_{1u}(p_u) = E_{1u}^{y} \cdot p_u^{z}$$
(9)

Where the exponent y and z can be determined from the fitting of the curves using Eqn. (8) and (9).

• Substituting the value of $k_{1u}(p_u)$ from Eqn. (4) in Eq (8) we can get


$$n\left\{\frac{N_{u}(p_{u})\sum_{u>l}A_{ul}}{n_{e}N_{1}}\right\} = \ln\left\{d_{1u}(p_{u})\right\} - \frac{E_{1u}}{k_{B}T_{e}}$$
(10)

• Substituting Eqn. (5) in Eqn. (10) we get

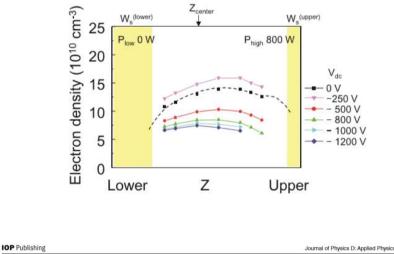
Determination of $T_{\rm e}$

$$\frac{E_{1u}}{k_B T_e} = ln \left\{ \frac{A_{ul} d_{1u}(p_u)}{\lambda_{ul} I_{ul} \sum_{u > l} A_{ul}} \right\} + C_2 \qquad (\mathbf{11}) \qquad C_2 = ln \left\{ \frac{4 \cdot \pi}{h \, c \, n_e N_1 L_{pl}} \right\} \qquad \text{is a constant}$$

- Equations (11) represents the equation of a straight line, and the slope of the line will give the direct value of T_e in non-equilibrium plasmas satisfying the corona balance condition. We need to validate the the corona balance formalism.
- For this, we recall our earlier studies of plasma density measurement by surface wave probe
 10¹¹ (a) C₄F₈

Rapid electron density decay observed by surface-wave probe in afterglow of pulsed fluorocarbon-based plasma

Yoshinobu Ohya^{1,2*}, Manabu Iwata¹, Kenji Ishikawa², Makoto Sekine², Masaru Hori², and Hideo Sugai³


¹Tokyo Electron Miyagai Ltd., Taiwa, Miyagi 981-3629, Japan ²Nagoya University, Nagoya 464-8603, Japan

³Chubu University, Kasugai, Aichi 487-8501, Japan

*E-mail: yoshinobu.ohya@tel.com

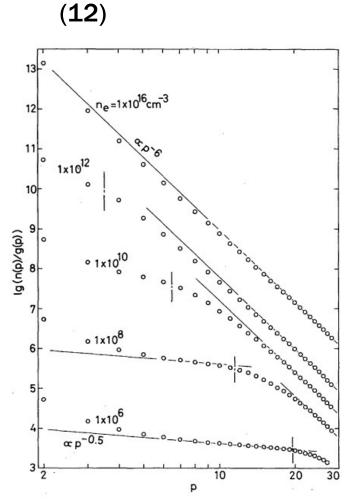
Received April 28, 2016; accepted May 24, 2016; published online July 15, 2016

To elucidate the pulsed fluorocarbon plasma behavior, a surface-wave probe with high time resolution was used to measure the electron density n_e in the attengiow of plasma. In a dual-frequency capacitively coupled plasma of fluorocarbon chemistry, a_{s_s} an $O_{-based} C_{s_s}$ and A mixture, n_e vanished rapidly in a short time (-5, s_s), whilst the d-current flowing onto the top electrod biased at -300 V decreased very slowly (decay time ~70 µs). This observation is clear evidence of ion-ion plasma formation by electron attachment in the attengiow. We point out that the electron attachment rates for fluorocarbon radicals significantly affect the electrons and ion-ion plasma behaviors observed at the aftergiow phase. © 2016 The Japan Society of Applied Physics

https://doi.org/10.1088/1361-6463/aa6017

J. Phys. D: Appl. Phys. 50 (2017) 155201 (13pp)

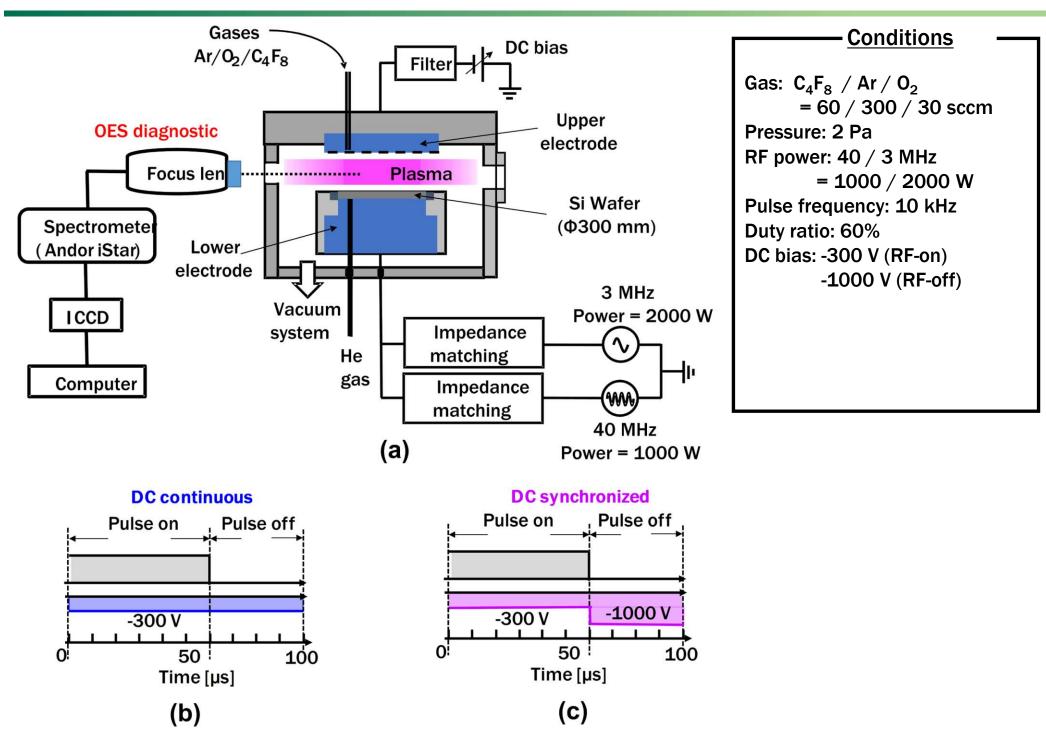
Spatial profiles of interelectrode electron density in direct current superposed dualfrequency capacitively coupled plasmas

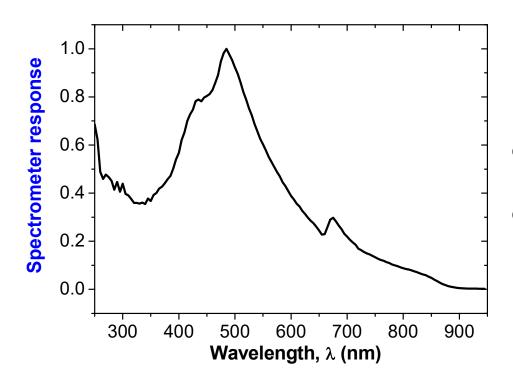

Yoshinobu Ohya^{1,2}, Kenji Ishikawa¹, Tatsuya Komuro¹, Tsuyoshi Yamaguchi¹, Keigo Takeda¹, Hiroki Kondo¹, Makoto Sekine¹ and Masaru Hori¹

Validity of corona balance

 To validate the the corona balance formalism, we need to varify that, since the plasma is optically thin (low to moderate density ~ 10⁹ to 10¹¹ cm⁻³), the relative population densities of the energy levels u of Ar (species we used for the present diagnosis) follow the expression^[15]

$$\frac{N_u(p_u)}{g_u(p_u)} \alpha p_u^{-a}$$

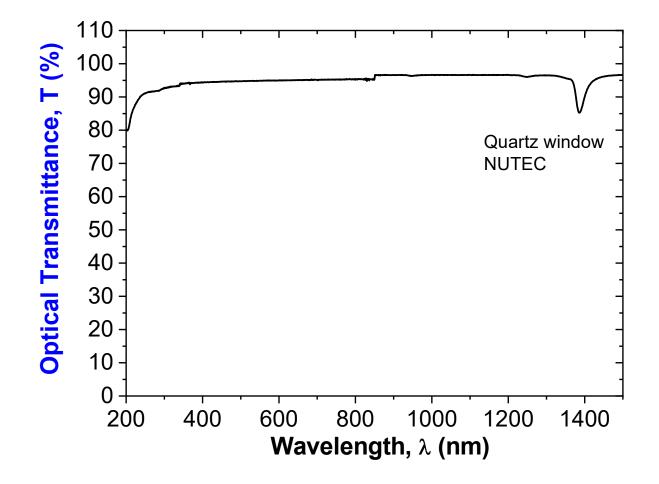

- When a = 0.5 \rightarrow n_e ~ 10⁶ cm⁻³
- The corona balance extends to levels with p_u values up to approximately 20.^[15]
- As the exponent increase from a = 0.5 to a = 3 the n_e increases from ~ 10^{6} cm⁻³ to 10^{10} cm⁻³
- For this case, the corona balance is only probable in excited states with values of p_u up to7.
- Also, there can be $n_e \sim 10^{11} \text{ cm}^{-3}$ with corona balance value for p_u between 2 and to 4 (relevant to our case) for $a \le 6$.


J. Phys. Soc. Japan 47, 273 (1979).

Experimental parameters

Experimental setups and operation parameters

Sensitivity of Spectrometer: Response curve


Grating-2: Andor 1200-300 Optical Fiber: 1

curves corresponding to the spectral response of the fiber + Grating + ICCD chain

Actual line intensity I_a = I/ f I = Measured spectral line intensity F = Spectrometer response

$$\ln\!\left(\frac{g_u \cdot A_{ul}}{I_{ul} \cdot \lambda_{ul}}\right) = \frac{E_u}{k_B T_{ex}} + C_1$$

In our case, the correction term is accommodated in constant C_1 .

The window can accommodate broad range of wavelengths for the OES

Computations of electron impact excitation rate coefficients

- Comparison with our data with existing literature of JAP paper
- Computation of parameters y and z

$\lambda_{ m ul}$ (nm)	E _u (eV)	g _u	A _{ul} (10 ⁷ s ⁻¹)	Transition levels $E_u \rightarrow E_l$	p _u	f _{lu}
419.83	14.58	1	0.257	$5p[1/2]_0 ightarrow 4s[3/2]_1^0$	3.395	2.26 x 10 ⁻³
425.12	14.46	3	0.0111	$5p[1/2]_1 \rightarrow 4s[3/2]_2^0$	3.234	1.81 x 10 ⁻⁴
427.22	14.52	3	0.0797	$5p[3/2]_1 \rightarrow 4s[3/2]_1^0$	3.312	2.18 x 10 ⁻³
434.52	14.66	3	0.0297	$5p'[3/2]_1 ightarrow 4s'[1/2]_1^0$	3.516	8.41 x 10 ⁻⁴
706.87	14.84	5	0.20	$6s[3/2]_1^0 \rightarrow 4p[5/2]_2$	3.845	1.35 x 10 ⁻²
726.52	14.86	3	0.017	$4d[3/2]_1^0 \rightarrow 4p[3/2]_1$	3.887	4.99 x 10 ⁻²
731.67	15.02	3	0.096	$6s'[1/2]_1^0 \rightarrow 4p'[1/2]_1$	4.287	3.37 x 10 ⁻²
750.39	13.48	1	4.450	$4p'[1/2]_0 ightarrow 4s'[1/2]_1^0$	2.442	1.25 x 10 ⁻¹
751.47	13.27	1	4.020	$4p[1/2]_0 \rightarrow 4s[3/2]_1^0$	2.337	1.14 x 10⁻¹
763.51	13.17	5	2.452	$4p[3/2]_2 \rightarrow 4s[3/2]_2^0$	2.291	2.14 x 10 ⁻¹
772.42	13.33	3	1.170	$4p'[1/2]_1 ightarrow 4s'[1/2]_0^0$	2.366	3.14 x 10 ⁻¹
811.53	13.08	7	3.310	$4p[5/2]_3 \rightarrow 4s[3/2]_2^0$	2.253	4.58 x 10 ⁻¹

Table II: Possible radiative transitions for emitted lines 26

$\lambda_{ul}(nm)$	Possible radiative Transitions $E_{\rm u} \rightarrow E_{\rm l} \ ({\rm u>l})$	No of radiative transitions	$\sum_{\substack{u > l \\ (\mathbf{10^7 s^{-1}})}} A_{ul}$	у	Z
419.83	$5p[1/2]_0 \rightarrow 4s[3/2]_1^0, 5p[1/2]_0 \rightarrow 4s'[1/2]_1^0$	2	0.375	-8.305	-2.624
425.12	$\begin{array}{l} 5p[1/2]_1 \rightarrow 4s[3/2]_2{}^0, 5p[1/2]_1 \rightarrow 4s[1/2]_0{}^0, \\ 5p[1/2]_1 \rightarrow 4s'[1/2]_0{}^0, 5p[1/2]_1 \rightarrow 4s'[1/2]_1{}^0 \end{array}$	4	0.08488	-9.445	-2.53
427.22	$\begin{array}{l} 5p[3/2]_1 \rightarrow 4s[3/2]_1^0, 5p[3/2]_1 \rightarrow 4s'[1/2]_1^0, \\ 5p[3/2]_1 \rightarrow 4s[3/2]_2^0, 5p[3/2]_1 \rightarrow 4s'[1/2]_0^0 \end{array}$	4	0.11797	-7.575	-4.487
434.52	$\begin{array}{l} 5p'[3/2]_1 \rightarrow 4s'[1/2]_1^0, 5p'[3/2]_1 \rightarrow 4s[3/2]_1^0, \\ 5p'[3/2]_1 \rightarrow 4s[3/2]_2^0, 5p'[3/2]_1 \rightarrow 4s'[1/2]_0^0 \end{array}$	4	0.0324	-6.575	-6.921
706.87	$\begin{array}{c} 6s[3/2]_1{}^0 \to 4p[5/2]_2, 6s[3/2]_1{}^0 \to 4p[1/2]_1, \\ 6s[3/2]_1{}^0 \to 4p[3/2]_1, 6s[3/2]_1{}^0 \to 4p[3/2]_2, \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	5	0.5191	-6.30	-4.621
726.52	$\begin{array}{l} 4d[3/2]_1^0 \rightarrow 4p[3/2]_1, \ 4d[3/2]_1^0 \rightarrow 4p[1/2]_0, \\ 4d[3/2]_1^0 \rightarrow 4p'[3/2]_1 \ 4d[3/2]_1^0 \rightarrow 4p'[1/2]_1 \end{array}$	4	0.0173	-6.275	-3.617
731.67	$\begin{array}{l} 6s'[1/2]_1^0 \to 4p'[1/2]_1, 6s'[1/2]_1^0 \to 4p'[1/2]_0, \\ 6s'[1/2]_1^0 \to 4p'[3/2]_2, 6s'[1/2]_1^0 \to 4p'[3/2]_1, \\ 6s'[1/2]_1^0 \to 4p[3/2]_2, 6s'[1/2]_1^0 \to 4p[5/2]_2 \end{array}$	6	0.4559	-3.987	-7.605
750.39	$4p'[1/2]_0 \rightarrow 4s'[1/2]_1^0, 4p'[1/2]_0 \rightarrow 4s[3/2]_1^0$	2	4.4736	-6.95	-5.735
751.47	$4p[1/2]_0 \rightarrow 4s[3/2]_1^0, 4p[1/2]_0 \rightarrow 4s'[1/2]_1^0$	2	4.104	-9.991	2.725
763.51	$\begin{array}{c} 4p[3/2]_2 \rightarrow 4s[3/2]_2{}^0, 4p[3/2]_2 \rightarrow 4s[3/2]_1{}^0, \\ 4p[1/2]_2 \rightarrow 4s'[1/2]_1{}^0 \end{array}$	3	3.443	-10.937	6.245
772.42	$\begin{array}{l} 4p'[1/2]_1 \rightarrow 4s'[1/2]_0^0, 4p'[1/2]_1 \rightarrow 4s'[1/2]_1^0, \\ 4p'[1/2]_1 \rightarrow 4s[3/2]_1^0, 4p'[1/2]_1 \rightarrow 4s[3/2]_2^0 \end{array}$	4	3.522	-14.994	18.992
811.53	$4p[5/2]_3 \rightarrow 4s[3/2]_2^0$	1	3.310	-7.092	-4.928

Comparison of rate coefficients with the literature

Taylor and Ali: JAP 64,89 (1988)

$$X(i,j) = \frac{4.3 \times 10^{-6} f(j,i) \exp\left[-E(j,i)/T_e\right]}{E(j,i) T_e^{1/2}} \Psi(j,i),$$
(11)

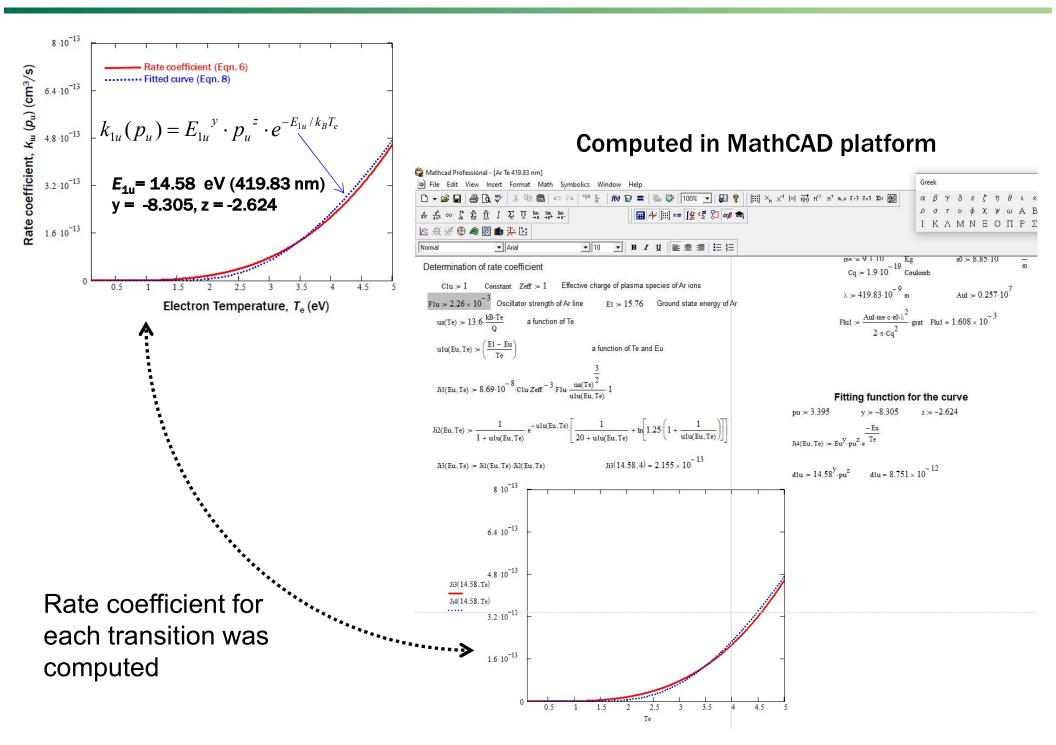
where E(j,i) = E(j) - E(i), i < j, f(j,i) is the oscillator strength, and T_e is the electron temperature in units of eV. An effective Gaunt factor of 0.2 is used for ions,^{23,24} while for neutrals

$$\Psi(j,i) = \left(1.0 + \frac{E(j,i)}{T_e}\right)^{-1} \left\{ \left(20.0 + \frac{E(j,i)}{T_e}\right)^{-1} + \ln\left[1.25\left(1.0 + \frac{T_e}{E(j,i)}\right)\right] \right\}.$$
 (12)

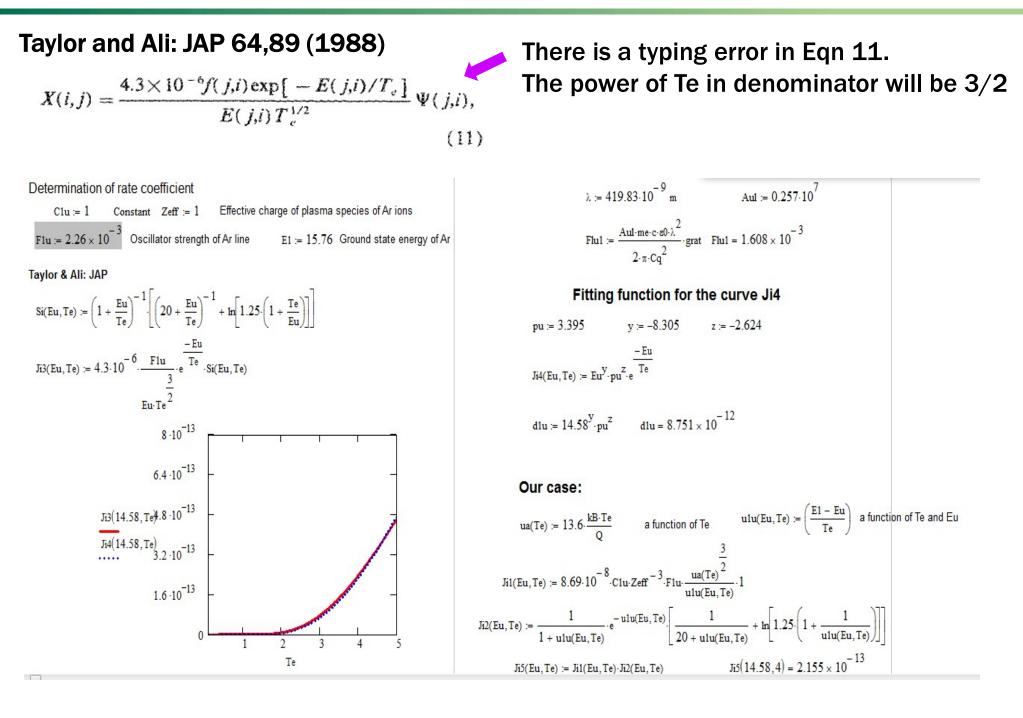
There is a typing error in Eqn 11 of the paper. The power of T_e in denominator will be 3/2

Our case

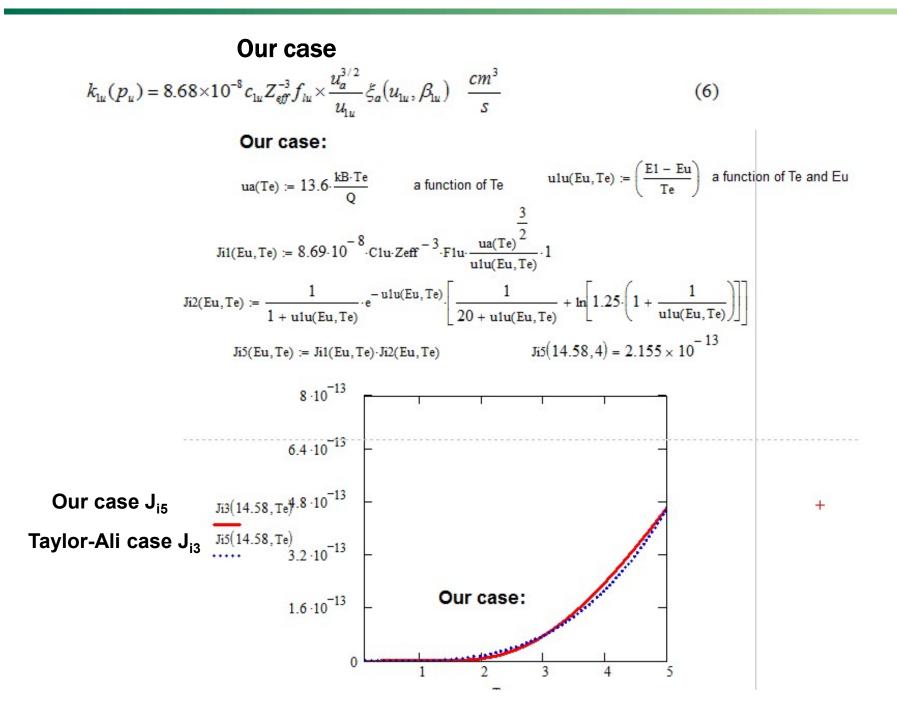
$$k_{\rm lu}(p_{\rm u}) = 8.68 \times 10^{-8} c_{\rm lu} Z_{\rm eff}^{-3} f_{\rm lu} \times \frac{u_a^{3/2}}{u_{\rm lu}} \xi_a(u_{\rm lu}, \beta_{\rm lu}) - \frac{cm^3}{s}$$
(6)


where the term Z_{eff} corresponds to the effective charge/atomic number (= 1 for Ar⁺ ion), c_{1u} represents a constant (\cong 1), and f_{hu} represents the absorption oscillator strength.⁵⁴ The other terms are $u_a = 13.6 \ k_B T_a$ (eV), $u_{1u} = (E_1 - E_u)/k_B T_a$, and $\beta_{1u} = 1 + [(Z_{eff}-1)/(Z_{eff}+1)]$. The function $\xi_a(u_{1w}\beta_{1u})$ can be determined⁵³ as

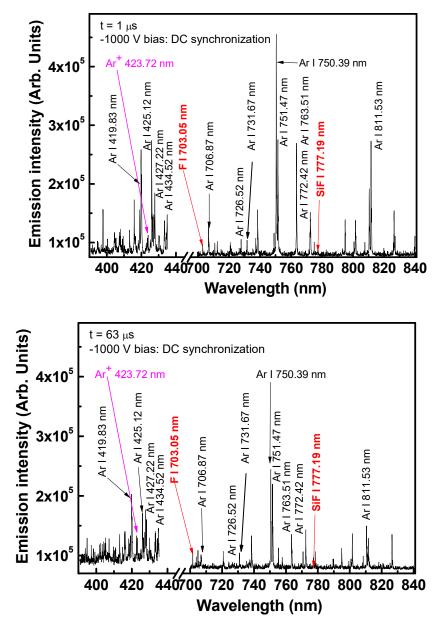
$$\xi_{a}(u_{1u},\beta_{1u}) = \frac{e^{-u_{u}}}{1+u_{1u}} \cdot \left(\frac{1}{20+u_{1u}} + \ln\left\{1.25 \times (1+\frac{1}{u_{1u}})\right\}\right)$$
(7)


We can further define the magnitude for rate coefficient $k_{lu}(\mathbf{p}_u)$ by electron-impact by a convenient and simpler expression with functional dependence on T_e using equations (6) and (7) as follows:

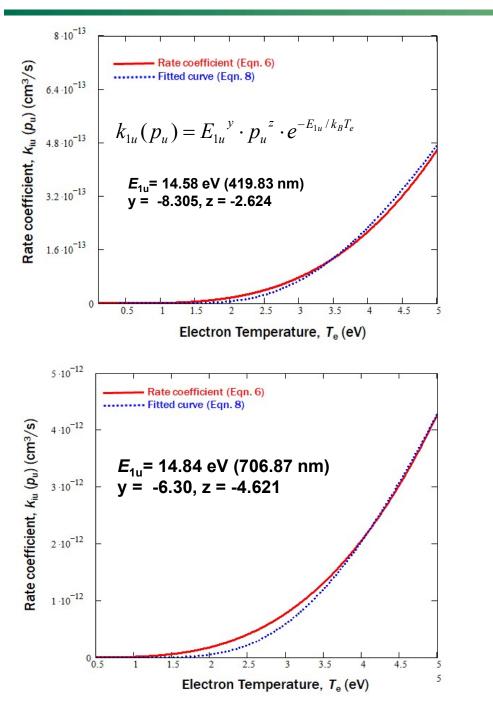
$$k_{1u}(p_u) = d_{1u}(p_u) \cdot e^{-E_{1u}/k_s T_s} \qquad \frac{cm^3}{s}$$
(8)

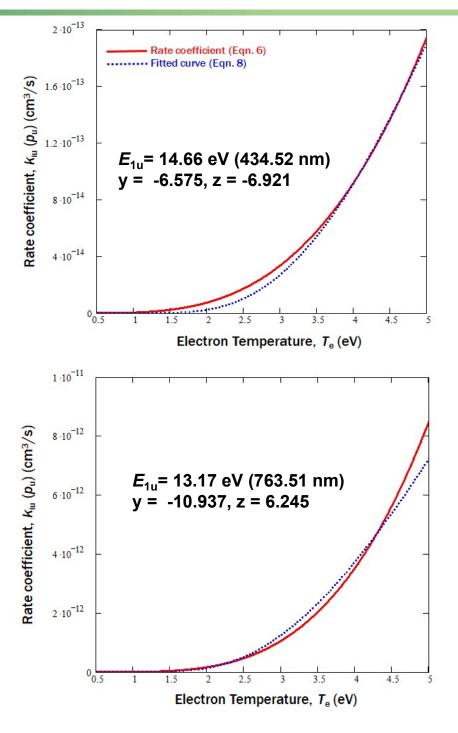

Rate coefficients: to obtain fitting parameters

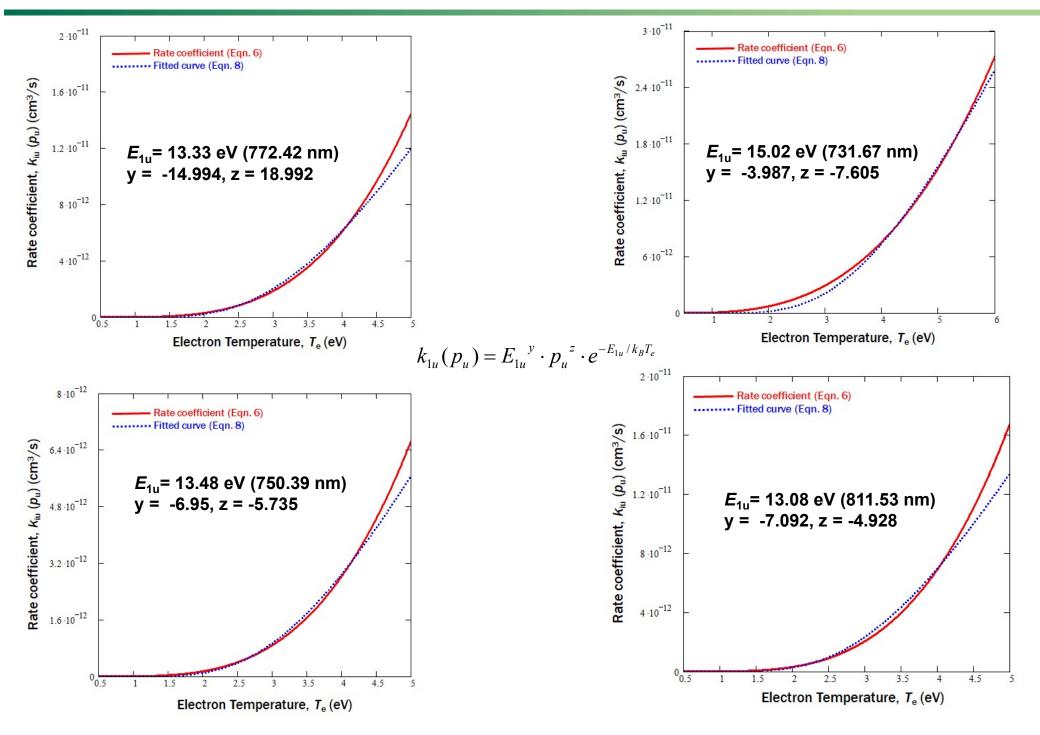
Rate coefficient and fitting parameters y and z



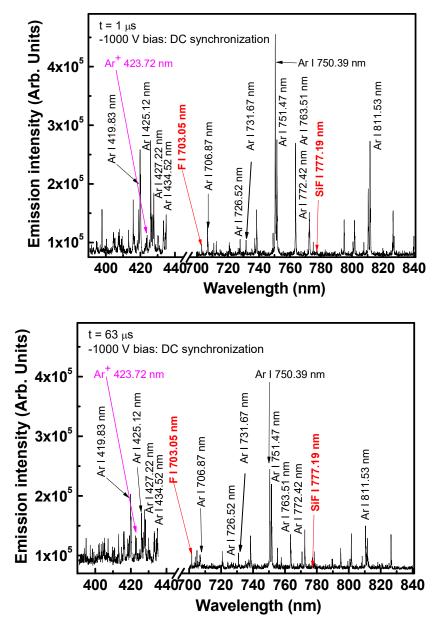
Rate coefficient and fitting parameters y and z


OES SPECTRUM: Examples in DC synchronized condition

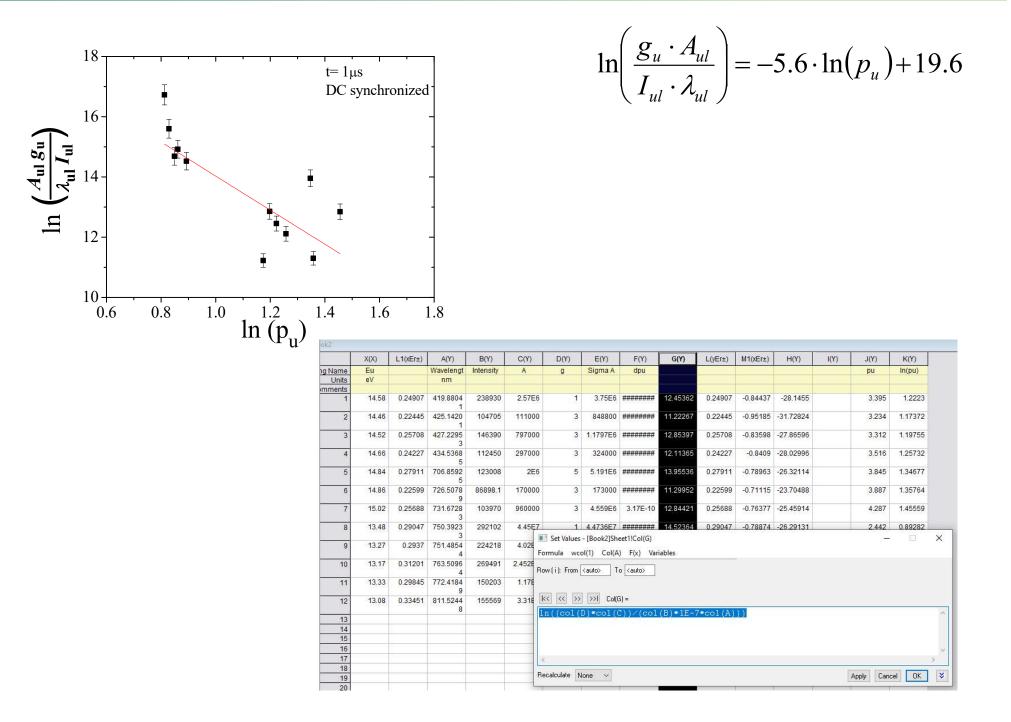

Typical OES spectra during glow (pulse on) at t = 1 μ s and after glow (pulse off) at t = 63 μ s


$\begin{array}{l} \lambda \text{(Table I)} \\ \text{Used for the} \\ \text{calculation} \end{array}$	λ (measured)	l(nm) At t = 1μs	l(nm) At t = 63μs
419.83	419.88041	238930	203036
425.12	425.14201	104705	108210
427.22	427.22953	146390	138939
434.52	434.53685	112450	102979
706.87	706.85925	123008	100958
726.52	726.50789	86898.1	84696.4
731.67	731.67283	103970	84518.8
750.39	750.39233	292102	151900
751.47	751.48544	224218	151487
763.51	763.50964	269491	131890
772.42	772.41849	150203	141566
811.53	811.52448	155569	95117

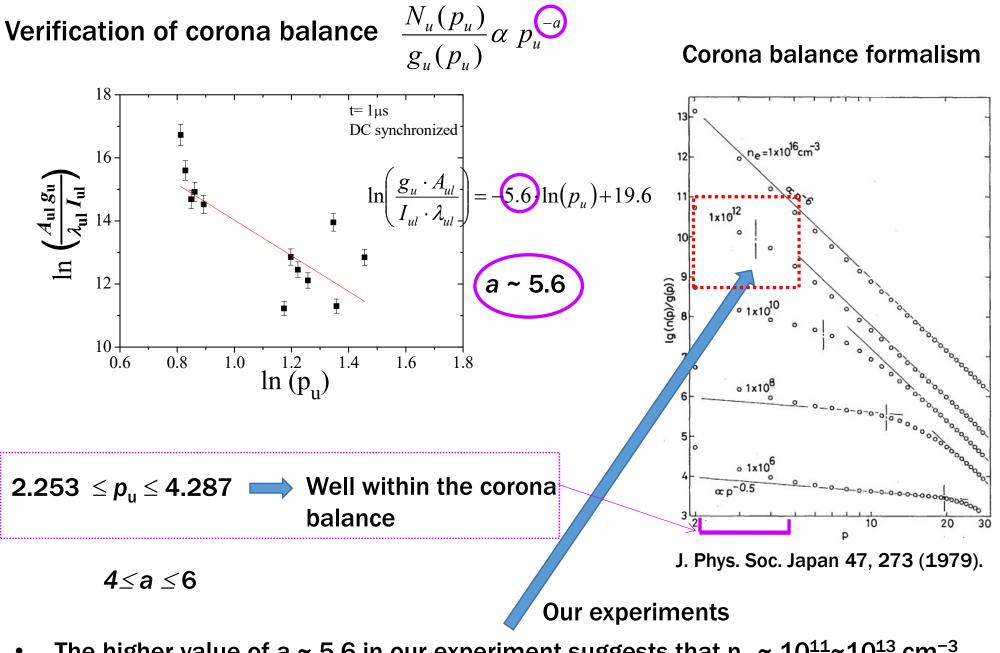
Rate coefficients: to obtain fitting parameters


Rate coefficients: to obtain fitting parameters

The parameter of corona model and validity of corona approximation


OES SPECTRUM: Examples in DC synchronized condition

Typical OES spectrum during glow (pulse on) at t = 1 μ s and after glow (pulse off) at t = 63 μ s

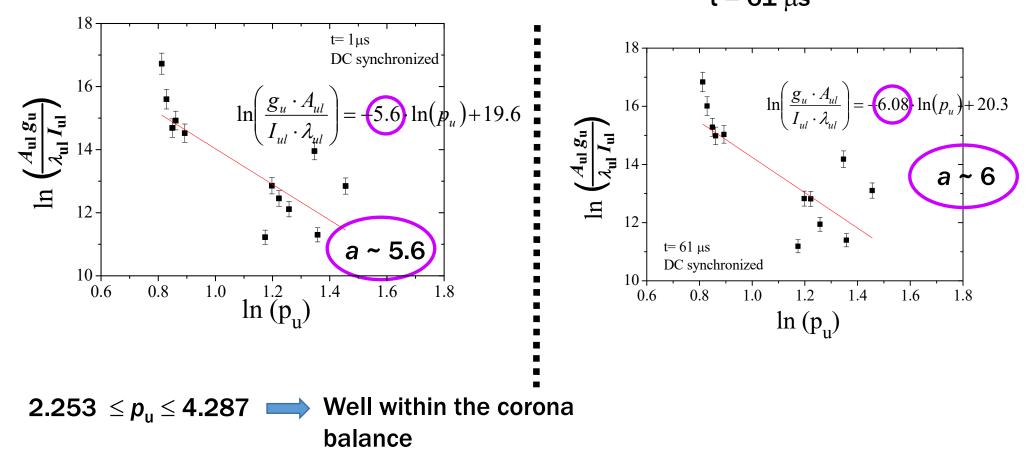


λ (Table I) Used for the calculation	λ (measured)	l(nm) At t = 1μs	l(nm) At t = 63μs
419.83	419.88041	238930	203036
425.12	425.14201	104705	108210
427.22	427.22953	146390	138939
434.52	434.53685	112450	102979
706.87	706.85925	123008	100958
726.52	726.50789	86898.1	84696.4
731.67	731.67283	103970	84518.8
750.39	750.39233	292102	151900
751.47	751.48544	224218	151487
763.51	763.50964	269491	131890
772.42	772.41849	150203	141566
811.53	811.52448	155569	95117

Corona factor (a) of Eqn 12

Relative population densities as a function of their effective principal quantum number $p_{\rm u}$

• The higher value of $a \sim 5.6$ in our experiment suggests that $n_e \sim 10^{11} \sim 10^{13}$ cm⁻³


Relative population densities as a function of their effective principal quantum number $p_{\rm u}$

Verification of corona balance

 $\frac{N_u(p_u)}{g_u(p_u)} \alpha p_u^{-a} \qquad \text{DC sy}$

DC synchronous condition

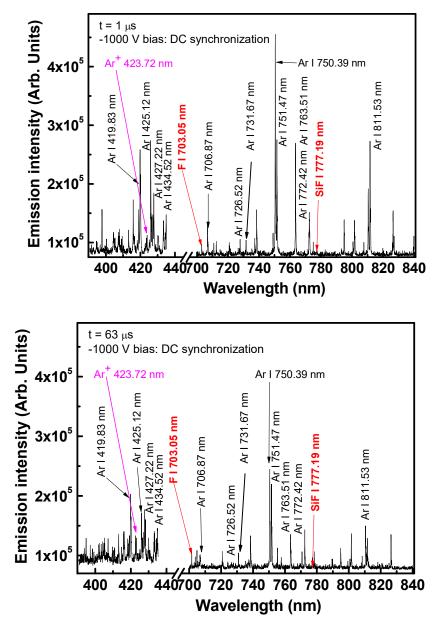
t = 1 μ**s**

t = 61 μs

Experimental results and discussion

1. Boltzmann Plot: Excitation temperature: T_{ex}

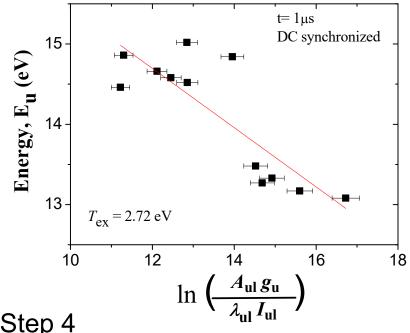
$$\ln\left(\frac{g_u \cdot A_{ul}}{I_{ul} \cdot \lambda_{ul}}\right) = \frac{E_u}{k_B T_{ex}} + C_1 \quad \Rightarrow E_u = k_B T_{ex} \cdot \ln\left(\frac{g_u \cdot A_{ul}}{I_{ul} \cdot \lambda_{ul}}\right) + \text{constant}$$

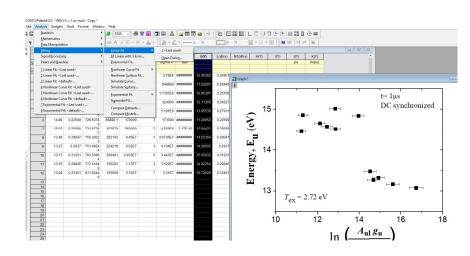

2. Modified Boltzmann equation: Electron temperature: T_e

$$\ln\left\{\frac{A_{ul}d_{1u}(p_u)}{\lambda_{ul}I_{ul}\sum_{u>l}A_{ul}}\right\} = \frac{E_{1u}}{k_BT_e} + C_2 \quad \Rightarrow \quad E_{1u} = k_BT_e \cdot \ln\left\{\frac{A_{ul}d_{1u}(p_u)}{\lambda_{ul}I_{ul}\sum_{u>l}A_{ul}}\right\} + \text{constant}$$

3. Variation of T_{ex} and T_{e} with RF pulse condition

OES SPECTRUM: Examples in DC synchronized condition

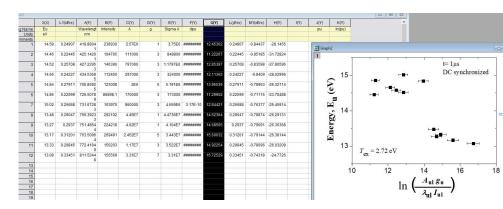

Typical OES spectrum during glow (pulse on) at t = 1 μ s and after glow (pulse off) at t = 63 μ s


λ (Table I) Used for the calculation	λ (measured)	l(nm) At t = 1μs	l(nm) At t = 63μs
419.83	419.88041	238930	203036
425.12	425.14201	104705	108210
427.22	427.22953	146390	138939
434.52	434.53685	112450	102979
706.87	706.85925	123008	100958
726.52	726.50789	86898.1	84696.4
731.67	731.67283	103970	84518.8
750.39	750.39233	292102	151900
751.47	751.48544	224218	151487
763.51	763.50964	269491	131890
772.42	772.41849	150203	141566
811.53	811.52448	155569	95117

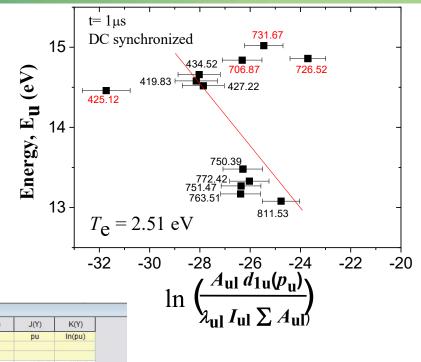
$T_{\rm ex}$ estimation using modified Boltzmann equation

Step

Calculation method (as a proof)

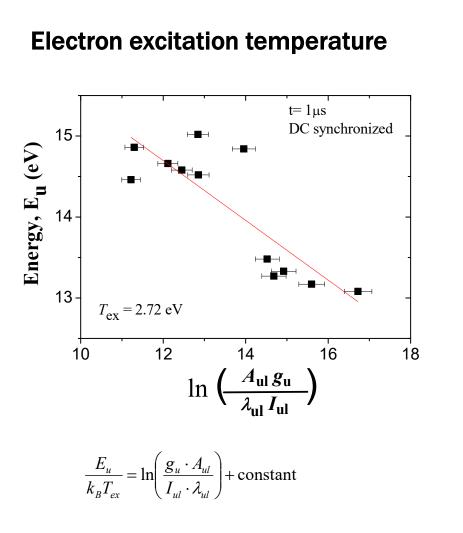

	X(X)	L1(xEr±)	A(Y)	B(Y)	C(Y)	D(Y)	E(Y)	F(Y)	G(Y)		J(Y)	K(Y)
ig Name	Eu		Wavelengt	Intensity	A	g	Sigma A	dpu		Plot •	pu	In(pu)
Units	eV		nm					1		🔏 Cut		
mments								1		🛍 Сору		
1	14.58	0.24907	419.8804 1	238930	2.57E6	1	3.75E6	*****	12.4536	Copy (full precision)	3.395	1.222
2	14.46	0.22445	425.1420 1	104705	111000	3	848800	****	11.2226	Copy (including label rows)	3.234	<mark>1.1737</mark>
3	14.52	0.25708	427.2295 3	146390	797000	3	1.1797E6	*****	12.8539	Insert	3.312	1.1975
4	14.66	0.24227	434.5368	112450	297000	3	324000	*****	12,1136	Delete	3.516	1.2573
5	14.84	0.27911	706.8592 5	123008	2E6	5	5.191E6	****	13.9553	Clear Remove Link	3.845	1.3467
6	14.86	0.22599	726.5078 9	86898.1	170000	3	173000	*****	11.2995	Set As	3.887	1.3576
7	15.02	0.25688	731.6728 3	103970	960000	3	4.559E6	3.17E-10	12.8442	Set Column values	4.287	1.4555
8	13.48	0.29047	750.3923 3	292102	4.45E7	1	4.4736E7	*****	14.5236	Sort Column	2.442	0.8928
9	13.27	0.2937	751.4854 4	224218	4.02E7	1	4.104E7	*****	14.6850	Sort Vorksheet	2.337	0.8488
10	13.17	0.31201	763.5096 4	269 <mark>4</mark> 91	2.452E7	5	3.443E7	*****	15.6003	Normalize	2.291	0.8289
11	<mark>13.33</mark>	0.29845	772.4184 9	150203	1.17E7	3	3.522E7	*****	14.9225	Frequency Count Σ≣ Statistics on Columns	2.366	0.861
12	13.08	0.33451	811.5244 8	155569	3.31E7	7	3.31E7	****	16.7252	Column Width	2.253	0.8122

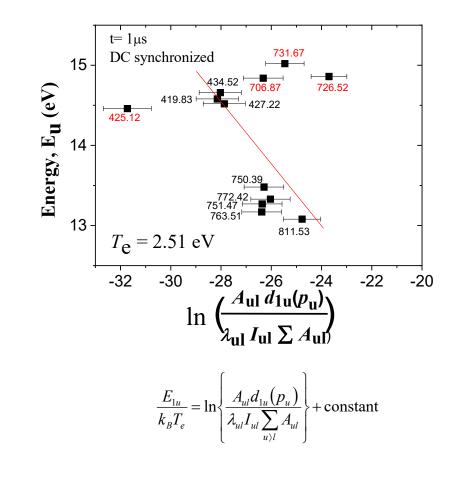
Step 2


Step 3

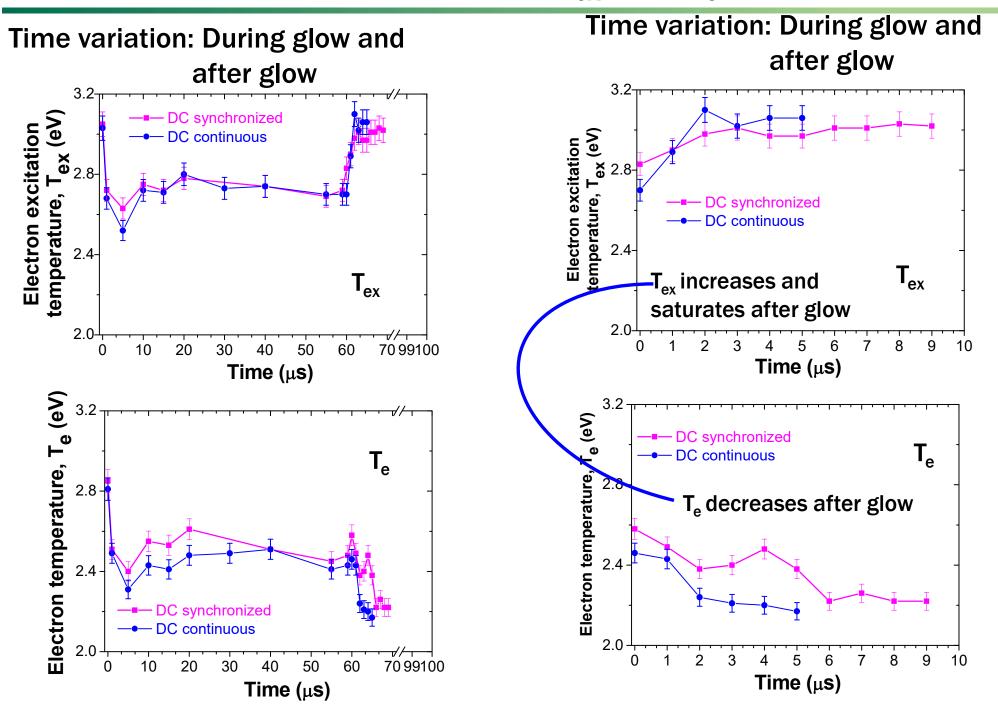
	1404	r ((main)	1.4.17	2007	0(1)	0(1)	-(1)	1	9(1)	-0	million (NETT)	1.417	241.1	0(1)	Tagi y	
g Name	Eu		Wavelengt	Intensity	A	g	Sigma A	dpu					1	pu	In(pu)	1
Units	eV		nm													
mments																
1	14.58	0.24907	419.8804 1	238930	2.57E6	1	3.75E6	*****	12.45362	0.24907	-0.84437	-28.1455		3.395	1.2223	
2	14.46	0.22445	425.1420 1	104705	111000	3	848800	*****	11.22267	0.22445	-0.95185	-31.72824		3.234	1.17372	
3	14.52	0.25708	427.2295	146390	797000	3	1.1797E6	*****	12.85397	0.25708	-0.83598	-27.86596		3.312	1.19755	
4	14.66	0.24227	434.5368	112450	297000	3	324000	****	12.11365	0.24227	-0.8409	-28.02996		3.516	1.25732	
5	14.84	0.27911	706.8592	123008	2E6	5	5.191E6	****	13.95536	0.27911	-0.78963	-26.32114		3.845	1.34677	
6	14.86	0.22599	726.5078	86898.1	170000	3	173000	*****	11.29952	0.22599	-0.71115	-23.70488		3.887	1.35764	
7	15.02	0.25688	731.6728	103970	960000	3	4.559E6	3.17E-10	12.84421	0.25688	-0.76377	-25.45914		4.287	1.45559	
8	13.48	0.29047	750.3923	292102	4.45E7	1	4.4736E7	#########	14.52364	0.29047	-0.78874	-26.29131		2.442	0.89282	1
			3			Set Values	- [Book2]Sh	eet1!Col(G)						-		
9	13.27	0.2937	751.4854	224218	4.026	Formula wc	ol(1) Col(A	k) F(x) Var	iables							
10	13.17	0.31201	763.5096 4	269491	2.4526	Row(i): From	<auto> T</auto>	o <auto></auto>								
11	13.33	0.29845	772.4184	150203	1.176											
12	13.08	0.33451	811.5244 8	155569		k< << >>			(D) N IE -	7 7 / 7						
13						ln(col(e) cor (c))~(c01	(0)-10-7	-col(A)						
14																
15																
16																
17						6										
18													-			ł
															cel OK	
19						Recalculate N	ione 🗸							Apply Cano	2el UK	1

X(X) L1(xEr±) A(Y) B(Y) C(Y) D(Y) E(Y) F(Y) G(Y) L(yEr±) M1(xEr±) H(Y) I(Y) J(Y) K(Y)


T_e estimation from Eqn. 11


	X(X)	L1(xEr±)	A(Y)	B(Y)	C(Y)	D(Y)	E(Y)	F(Y)	G(Y)	L(yEr±)	M1(xEr±)	H(Y)	I(Y)	J(Y)	K(Y)
Name	Eu		Wavelengt	Intensity	A	g	Sigma A	dpu						pu	In(pu)
Units	eV		nm												
nments															
1	14.58	0.24907	419.8804 1	238930	2.57E	6 1	3.75E6	****	12.45362	0.24907	-0.84437	-28.1455		3.395	1.2223
2	14.46	0.22445	425.1420 1	104705	11100	0 3	848800	*****	11.22267	0.22445	-0.95185	-31.72824		3.234	1.17372
3	14.52	0.25708	427.2295 3	146390	79700	0 3	1.1797E6	*****	12.85397	0.25708	-0.83598	-27.86596		3.312	1.19755
4	14.66	0.24227	434.5368 5	112450	29700	0 3	324000	****	12.1 <mark>13</mark> 65	0.24227	-0.8409	-28.02996		3.516	1.25732
5	14.84	0.27911	706.8592 5	123008	2E	6 5	5.191E6	*****	13.95536	0.27911	-0.78963	-26.32114		3.845	1.34677
6	14.86	0.22599	726.5078 9	86898.1	17000	0 3	173000	****	11.29952	0.22599	-0.71115	-23.70488		3.887	1.35764
7	15.02	0.25688	731.6728 3	103970	96000	0 3	4.559E6	3.17E-10	12.84421	0.25688	-0.76377	-25.45914		4.287	1.45559
8	13.48	0.29047	750.3923 3	292102	4.45E	7 1. Set Values		######################################	14.52364	0.29047	-0.78874	-26.29131		2.442	0.89282
9	13.27	0.2937	751.4854 4	224218	4.02E	Formula wco			iables						
10	13.17	0.31201	763.5096 4	269491	2.452E	Row (i): From	<auto></auto>	o <auto></auto>							
11	13.33	0.29845	772.4184 9	150203	1.17E										
12	13.08	0.33451	811.5244 8	155569	3.31E	k< << >>		100 M	(3)*1- 7	(#(1/D)	*aal(E)				
13							c)*cor(.	r))/(cor	(A)*1e-/	*COI(D)	*COL(E)	11			
14															
15															
16															
17						<									
18							S) ()							AL 2014 19280	
19						Recalculate N	ione 🗸							Apply Canc	el OK

Evaluation of T_{ex} and T_{e} : DC bias: -1000 V (RF-on)


Representative plots

Electron temperature

Time evolution of parameters: T_{ex} and T_e

Determination of Plasma density (*n*_e) from OES data

- 1. The Saha equation (or equilibrium) describes the degree of ionization for any gas in thermal equilibrium as a function of the temperature, density, and ionization energies of the atoms
- 2. Maxwell–Boltzmann distribution is used for describing particle in plasma (as a fluid), where the particles exchange energy and momentum with each other or with their thermal environment.

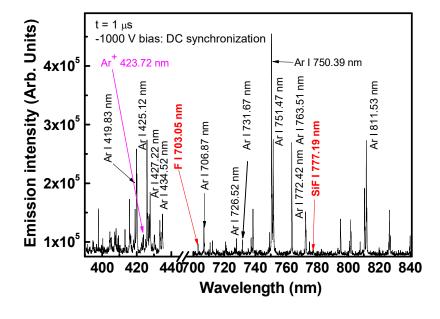
- Formulation of equation for n_e using Saha and Maxwell-Boltzmann equations
- Variation of n_e with RF pulse condition

Plasma density (n_e) evaluation using Saha ionization equation

We approach the Saha equation through the Einstein transition probabilities while making use of the Boltzmann equation.

• We consider two lines: 419.83 nm (Ar atom) and 423.72 nm (Ar⁺) to determine n_e . Applying Boltzmann equation, we get the line intensity ratio as

$$\frac{I_{419.83}}{I_{423.72}} = \left(\frac{\lambda_{423.72} \cdot A_{419.83} \cdot N_{419.83} \cdot g_{419.83} \cdot U_{423.72}(T_e)}{\lambda_{419.83} \cdot A_{423.72} \cdot N_{423.72} \cdot U_{419.83}(T_e)}\right) \cdot \exp\left(-\frac{E_{419.83} - E_{423.72}}{k_B T_e}\right)$$
(13)


The subscript 419.83 and 423.72 represents the emissions from Ar atom and ions, respectively. $N_{419.83}$ and $U_{419.83}$ = densities of excited atoms and partition function relevant to emissions of wavelength 419.83 nm

 $N_{423.72}$ and $U_{423.72}$ = densities of excited atoms and partition function relevant to emissions of wavelength 423.72 nm

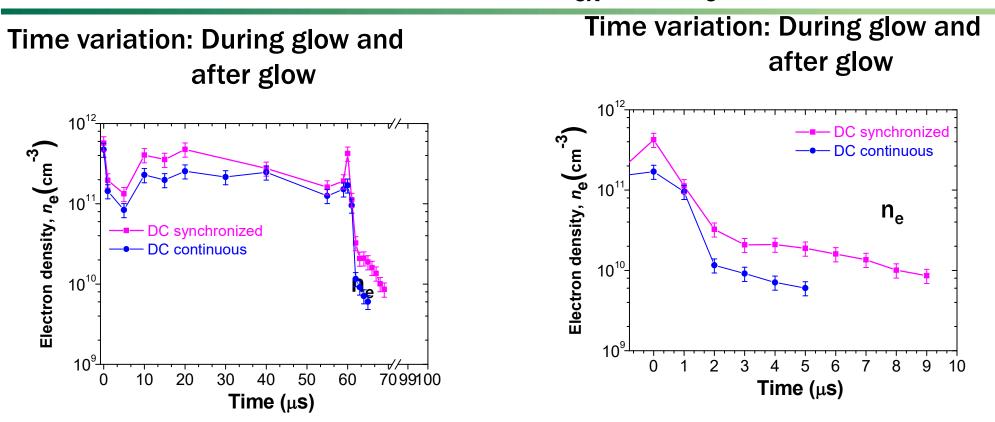
Applying Saha equation, we get the number density ratio involving atomic excitation and ionization as

$$\frac{n_e N_{423.72}}{N_{419.83}} = \frac{2U_{423.72}(T_e)}{U_{419.83}(T_e)} \cdot \frac{\left(2\pi m_e k_B T_e\right)^{3/2}}{h^3} \cdot \exp\left(-\frac{E_{Ar} - \Delta E_{Ar}}{k_B T_e}\right)$$
(14)

Substituting Eqn. (14) in Eqn. (13), we get the expression for plasma density as $n_{e} = 2 \cdot \frac{\left(2\pi m_{e}k_{B}\right)^{3/2}}{h^{3}} \left(\frac{I_{419.83} \cdot A_{423.72} \cdot g_{423.72} \cdot \lambda_{419.83}}{I_{423.72} \cdot A_{419.83} \cdot g_{419.83} \cdot \lambda_{423.72}}\right) \cdot T_{e}^{3/2} \exp\left(\frac{-E_{Ar} + \Delta E_{Ar} + E_{423.72} - E_{419.83}}{T_{e}}\right)$ (15)

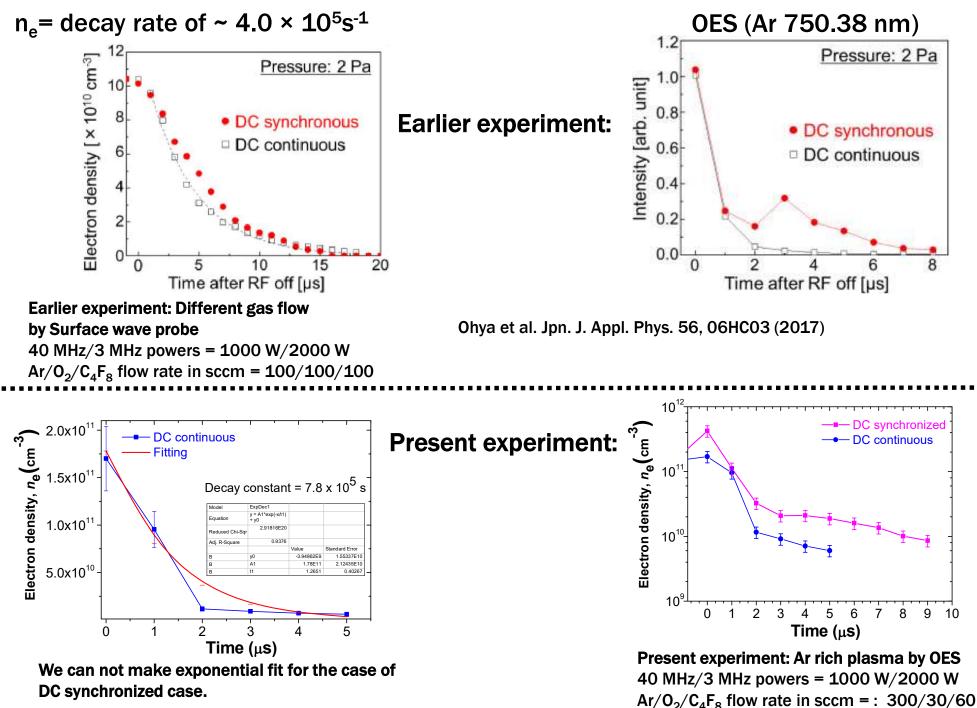
• Two select lines from our measurements 419.83 nm (Ar atom) and 423.72 nm (Ar⁺) are chosen to $(n_{\rm e})$.

47


We need the value of $T_{\rm e}$ to calculate $n_{\rm e}$

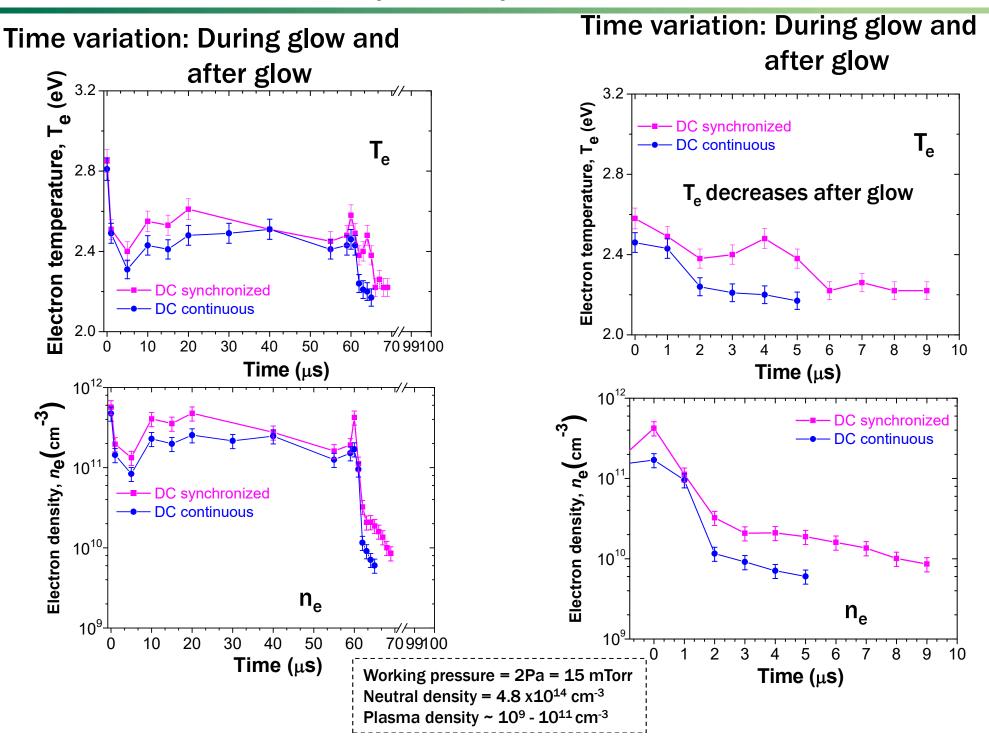
$$n_{e} = 2 \cdot \frac{\left(2\pi m_{e} k_{B}\right)^{3/2}}{h^{3}} \left(\frac{I_{419.83} \cdot A_{423.72} \cdot g_{423.72} \cdot \lambda_{419.83}}{I_{423.72} \cdot A_{419.83} \cdot g_{419.83} \cdot \lambda_{423.72}}\right) \cdot T_{e}^{3/2} \exp\left(\frac{-E_{Ar} + E_{423.72} - E_{419.83}}{T_{e}}\right)$$
(15)

Wavelength λ (nm)	Parameters	Emission intensity	Other Comments
Ar I-419.83	$g_{419.83} = 1;$ $E_{419.83} = 14.58 \text{ eV}$ $A_{419.83} = 0.257 \times 10^7 \text{ s}^{-1}$	I _{419.83} = measured intensity of 419.83 nm line	<i>E</i> _{Ar} = 15.76 eV
Ar+-423.72	$g_{423.72} = 4;$ $E_{423.72} = 37.11 \text{ eV}$ $A_{423.72} = 1.12 \times 10^7 \text{ s}^{-1}$	<i>I</i> _{419.83} = measured intensity of 423.72 nm line	


Data taken from: W. L. Wiese, M. W. Smith and B. M. Miles, Atom. Trans. Prob. NSRDS-NBS. 22 (US), 1969.

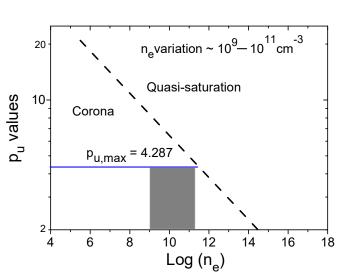
Time evolution of parameters: T_{ex} and T_e

 ${\bf n}_{\rm e}$ falls rapidly in DC continuous mode compared to that of DC synchronized mode.


Comparison with earlier low power and different gas flow experiment

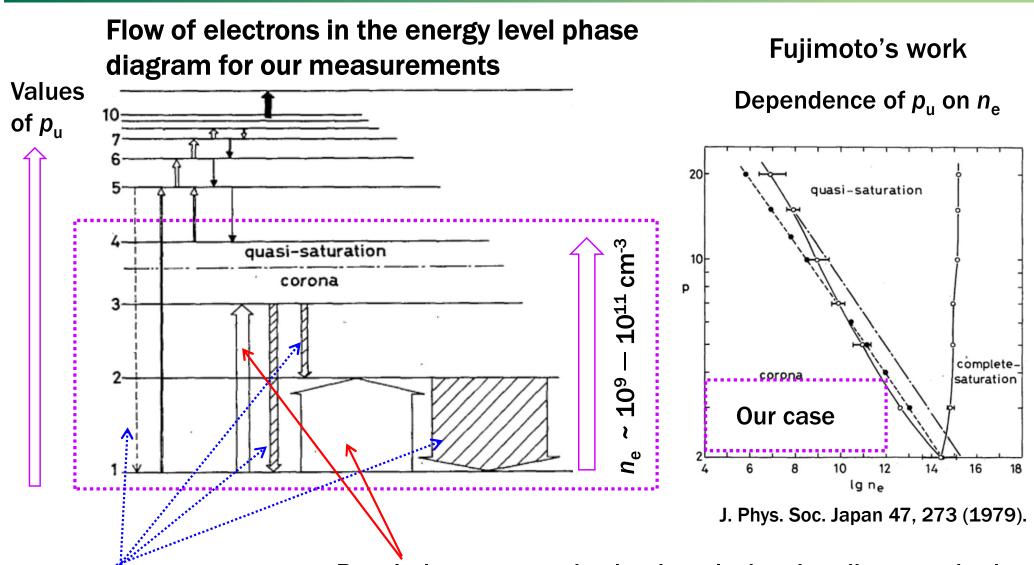
Summary / Conclusion

- Scientific aspect
- Relevance to etching process
- Relevance to corona approximation


Overall variation of T_e and n_e with pulse

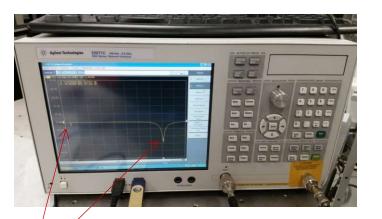
Comparison of our experimental data with Fujimoto's work

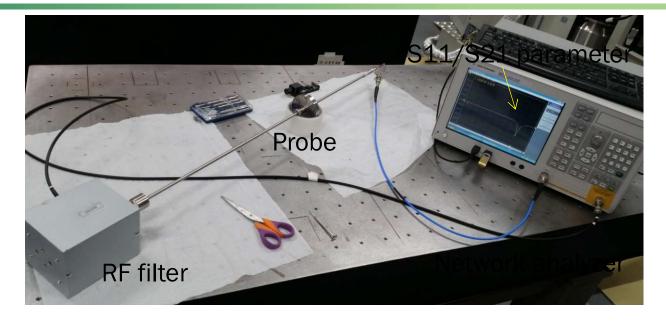
- The electron density (n_e) in the system of excited levels determines the population density of all exited levels represented by the effective principal quantum number p_u .
- Fujimoto,^[14] in his work, has determined the dependence of p_u on n_e by the phase diagram.
- Phase diagram shows three stages of plasmas including the corona phase.
- Data in our experiments show that $2 < p_u < 4.3$ (Table 1) n_e (maximum) ~ 10^{11} cm⁻³


The present results suits favorably with the corona stage, and hence, corona approximation is well validated

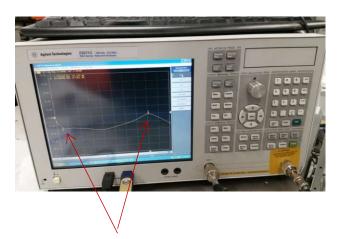
Dependence of p_{μ} on n_{e}

J. Phys. Soc. Japan 47, 273 (1979).


Kinetics of Plasma: Phase diagram for our measurements



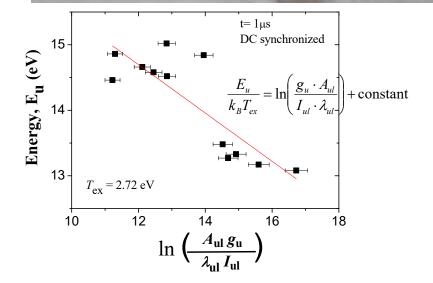
Radiative transition (De-populating process) Populating process is dominantly by the direct excitation from the ground ($p_u = 1$) level, while the small contribution comes from the cascade from higher levels ($p \ge 5$), which are not observed in OES experiments.

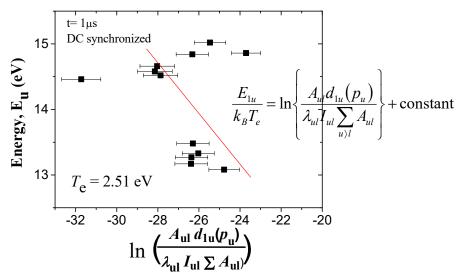

S11/S21 parameters monitoring for Filter tuning: for NUTEC system

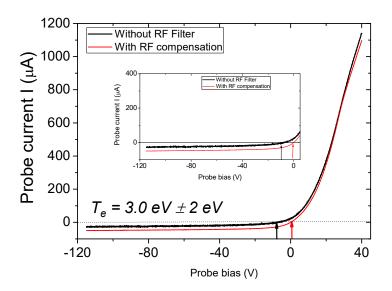
Tuning for ~ 40.68 MHz & 3.2 MHz

S₂₁ parameter at two excited frequencies.

 S_{11} parameter at two frequencies


LP I-V data Measurement: Validation our OES data using RF


compensated Langmuir probe


RF compensating Filter circuit

We will report our work on detailed design of RF Langmuir probe and LP measurements in future work.

LP measurement in discharge at 1 μs

Conclusion

- **1.** Spectroscopic study in dual frequency commercial CCP plasmas at lowpressure is undertaken for an etching process.
- 2. Corona plasma approximation is realized for our operating condition of low pressure plasma with low to moderate plasma density.
- 3. Plasma parameters like T_e and n_e were determined in relation to the Applied RF pulsed power.
- 4. Over the course of one pulse period it is observed that both T_e and n_e increases during on-phase and decays during the off-phase. Both T_e and n_e are synchronized with the RF pulse.
- 5. In RF pulse off phase, most electron disappears and negative ions can be expected to generate by the electron attachment process to maintain the plasma neutrality by positive and negative ions.
- 6. In pulsed CCP plasmas during the RF off-period, T_e drops while maintaining the plasma of very low n_e . T_e in the Synchronized phase enhances compared to continuous mode due to higher electronegativity in afterglow.
- 7. Corona plasma approximation is well validated by the experimental results.

Thank you !