Supporting Information For

Structural diversity and hydrogen storage properties in the system K-Si-H

 ¹State Key Laboratory of Superhard Materials, college of Physics, Jilin University, Changchun 130012, PR China
 ²Department of Physics and Electronic Engineering, Hebei Normal University for Nationalities, Chengde, 067000, China
 ³ Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
 ⁴Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P. R. China
 ⁵Department of Earth Science, University of Cambridge, Downing Site, Cambridge CB2 3EQ, United Kingdom
 ⁶Asian School of the Environment and School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798
 ⁷Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

⁸Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan

*Corresponding author. cuitian@nbu.edu.cn or cuitian@jlu.edu.cn

[†]Corresponding author. duandf@jlu.edu.cn

Computational details

Full variable-composition predictions were firstly performed within 4000 structures using random structure searches based on the AIRSS code at pressures of 1atm, 50 and 100 GPa. Within the basic AIRSS approach a cell volume and shape is selected at random within a reasonable range; atoms are added at random positions to provide the desired stoichiometry and the system is relaxed until the forces on the atoms are negligible and the pressure takes the required value. Repeating this procedure provides a relatively sparse sampling of the 'structure space'. We constrained the minimum atomic distances of 1-3 Å in the initial structures, which helps to space out the atoms appropriately and also retain a high degree of randomness. We performed searches with various different symmetry constraints, which is useful because low-energy structures often possess symmetries. The CASTEP code [1] with on-the-fly (OTF) generation of ultrasoft pseudopotentials was used during the AIRSS searches. The cut off energy and kpoints mp spacing parameters were chosen to be 500 eV and $2\pi \times 0.07$ Å⁻¹. Fixed-composition predictions were employed to further search stable or metastable structures for stable compounds with 1-4 formula units by means of CALYPSO and USPEX codes, during which the geometrical optimizations were performed by VASP (Vienna ab initio simulation packages) code. The cutoff energy and k-point mesh were set as 400 eV and $2\pi \times 0.07$ Å⁻¹. For most of the cases, the fixed-composition structure searches reached convergence after 40 generations, generating about 1600 structures. The predicted low-enthalpy structures were then optimized at a higher accuracy using VASP code.

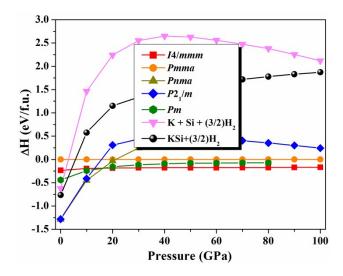


Fig. S1. Enthalpy curves of various structures of KSiH₃ relative to *Pmma* structure as a function of pressure. The enthalpies for KSiH₃ with respect to $K + Si + H_2$ are also provided. As shown, two competitive structures of *P*2₁/*m* and *Pnma* have lower enthalpies at ambient conditions. The vertical coordinates of *P*2₁/*m* and *Pnma* are -1.280 eV/f.u. and -1.287 eV/f.u., respectively, indicating that KSiH₃ prefers *Pnma* phase.

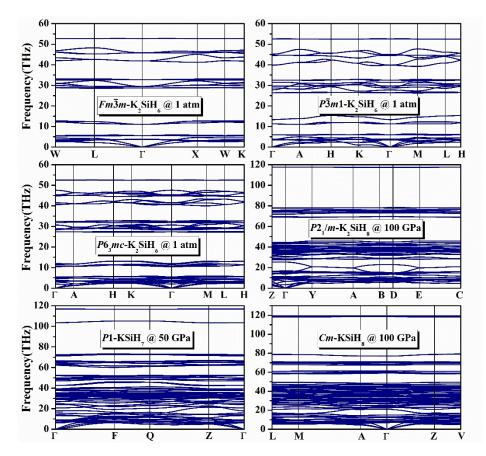


Fig. S2 Calculated phonon dispersion curves for K-Si-H phases at corresponding pressures.

Crystal structure	C _{ij} (kBar)
$Fm^{3}m-K_{2}SiH_{6}$ (1 atm)	$C_{11} = 322, C_{44} = 105, C_{12} = 106.$
$P^{\overline{3}}m_1 - K_2 SiH_6$ (1 atm)	$C_{11} = 482, C_{33} = 214, C_{44} = 62, C_{66} = 183, C_{12} = 116, C_{13} = 45.$
$\begin{array}{c} P6_{3}mc\text{-}K_{2}SiH_{6} \\ (1 \text{ atm}) \end{array}$	$C_{11} = 385, C_{33} = 263, C_{44} = 95, C_{66} = 126, C_{12} = 133, C_{13} = 86.$
$P2_1/m$ -K ₂ SiH ₈	$C_{11} = 3507, C_{22} = 3184, C_{33} = 3916, C_{44} = 554, C_{55} = 1281, C_{66} = 1543, C_{12} =$
(100 GPa)	1483, $C_{13} = 1279$, $C_{23} = 1983$, $C_{15} = 109$, $C_{25} = -176$, $C_{35} = 59$, $C_{46} = -71$.
<i>P</i> 1-KSiH ₇ (50 GPa)	$\begin{array}{l} C_{11}=2343, C_{12}=567, C_{13}=829, C_{14}=-189, C_{15}=-76, C_{16}=87, C_{21}=567, C_{22}\\ =2334, C_{23}=1112, C_{24}=-11, C_{25}=-55, C_{26}=133, C_{31}=829, C_{32}=1112, C_{33}\\ =2034, C_{34}=149, C_{35}=129, C_{36}=-86, C_{41}=-189, C_{42}=-11, C_{43}=149, C_{44}=1007, C_{45}=140, C_{46}=31, C_{51}=-75, C_{52}=-55, C_{53}=129, C_{54}=140, C_{55}=551, \\ C_{56}=-82, C_{61}=87, C_{62}=133, C_{63}=-86, C_{64}=31, C_{65}=-82, C_{66}=549. \end{array}$
Cm-KSiH ₈	$C_{11} = 3742, C_{22} = 3690, C_{33} = 3659, C_{44} = 1462, C_{55} = 1508, C_{66} = 1350, C_{12} =$
(100 GPa)	1637, $C_{13} = 1356$, $C_{23} = 1343$, $C_{15} = -4$, $C_{25} = -58$, $C_{35} = -193$, $C_{46} = 269$.

Table S1. Calculated elastic constants for K-Si-H compounds.

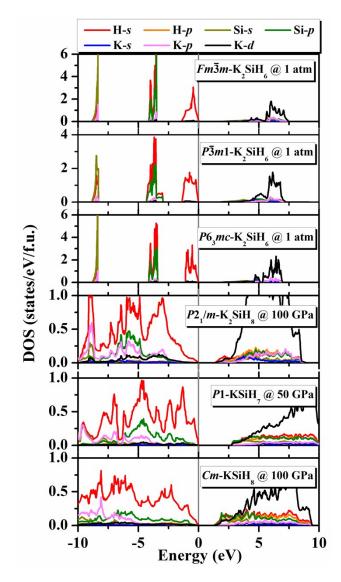


Fig. S3 Calculated projected density of states for K-Si-H phases. Fermi level is set at zero energy and marked by the vertical solid line. It is shown that the gaps between the valence and conduction bands give all studied compounds the properties of insulating materials. In K₂SiH₆ phases, there are quite large contributions of H-*s* orbit on the highest valence bands in comparison to that in other compounds. Furthermore, it is noted that the weak Si-*p* and H-*s* orbital hybridization in the valence band region can be seen, which contributes the weak bonding interactions between Si and H atoms.

Structure Pressure	Atom	Charge value	δ(e)
	H1	1.70	-0.70
$Fm^{3}m$ -K ₂ SiH ₆	Si1	1.41	2.59
1 atm	K1	8.19	0.81
	H1	1.70	-0.70
$P^{3}m1$ -K ₂ SiH ₆	Si1	1.42	2.58
1 atm	K1	8.20	0.80
	H1	1.70	-0.7
DC m v V C'H	H7	1.70	-0.7
$P6_3mc$ -K ₂ SiH ₆	Si1	1.41	2.59
1 atm	K1	8.19	0.81
	K3	8.19	0.81
	H1	1.66	-0.66
	H2	1.66	-0.66
	H3	1.03	-0.03
$P2_1/m$ - K ₂ SiH ₈	H13	1.65	-0.65
100 GPa	H15	1.66	-0.66
	Si1	1.18	2.82
	K1	8.42	0.58
	K3	8.41	0.59
	H1	1.66	-0.66
	H2	1.73	-0.73
	H3	1.66	-0.66
	H4	1.65	-0.65
	H5	1.70	-0.70
	H6	1.65	-0.65
	H7	1.64	-0.64
	H8	1.07	-0.07
P1- KSiH7	Н9	1.65	-0.65
50 GPa	H10	0.97	0.03
	H11	1.64	-0.64
	H12	1.66	-0.66
	H13	0.96	0.04
	H14	1.07	-0.07
	Si1	1.31	2.69
	Si2	1.32	2.68
	K1	8.32	0.68
	K2	8.33	0.67

Table S2. The calculated charge values of K, Si and H atoms. $\delta(e)$ represents the lost charge. It is shown that the charge is transferred from K and Si to H atoms.

	H1	1.65	-0.65
	H2	1.00	0.00
	Н3	1.62	-0.62
	H4	1.61	-0.61
	H5	1.06	-0.06
	H11	1.70	-0.70
<i>Cm</i> - KSiH ₈	H12	1.75	-0.75
100 GPa	H13	1.02	-0.02
	H14	1.59	-1.59
	H15	1.61	-0.61
	H16	1.03	-0.03
	Si1	1.31	2.69
	Si2	1.36	2.64
	K1	8.37	0.63

~	Lattice		
Structure	parameters	Atomic coordinates (fractional)	Sites
Pressure	(Å, °)		
$Fm^{3}m$ -K ₂ SiH ₆	a = b = c = 7.867	H1 0.500 -0.205 -0.500	24e
	$\alpha = \beta = \gamma = 90$	Si1 0.000 0.000 0.000	4a
1 atm		K1 0.250 -0.250 -0.250	8c
	a = b = 4.531	H1 0.159 0.841 0.745	6i
P^3m_1 -K ₂ SiH ₆	c = 3.464	Si1 0.000 0.000 0.500	1b
50 GPa	$\alpha = \beta = 90$	K1 0.667 0.333 0.778	2d
	$\gamma = 120$		
$P6_3mc$ -K ₂ SiH ₆	a = b = 5.490	H1 0.193 0.807 0.868	6c
1 atm	c = 9.074	H7 0.057 0.529 0.073	6c
	$\alpha = \beta = 90$	Si1 0.333 0.667 0.969	2b
	$\gamma = 120$	K1 0.667 0.333 0.847	2b
		K3 0.000 0.000 0.604	2a
$P2_1/m$ - K ₂ SiH ₈	a = 3.112	H1 0.521 0.500 0.838	4f
100 GPa	b = 4.193	H2 0.788 0.994 0.708	4f
	c = 9.616	H3 0.444 0.953 0.461	4f
	$\alpha = 90$	H13 0.779 0.750 0.373	2e
	$\beta = 119.04$	H15 0.102 0.250 0.912	2e
	$\gamma = 90$	Si1 0.852 0.750 0.232	2e
		K1 0.137 0.750 0.934	2e
		K3 0.826 0.250 0.387	2e
P1- KSiH7	a = 5.591	H1 0.015 0.613 0.481	1a
50 GPa	b = 5.264	H2 0.040 0.212 0.487	1a
	c = 3.952	H3 0.461 0.016 0.636	1a
	$\alpha = 71.65$	H4 0.333 0.077 0.996	1a
	$\beta = 109.37$	H5 0.904 0.291 0.878	1a
	γ <i>=</i> 76.75	H6 0.196 0.444 0.132	1a
		H7 0.618 0.714 0.451	1a
		H8 0.777 0.040 0.148	1a
		H9 0.141 0.878 0.351	1a
		H10 0.353 0.798 0.933	1a
		H11 0.620 0.318 0.359	1a
		H12 0.708 0.622 0.975	1a
		H13 0.668 0.978 0.131	1a
		H14 0.340 0.664 0.052	1a
		Si1 0.805 0.487 0.406	1a
		Si2 0.212 0.140 0.252	1a
		K1 0.905 0.882 0.774	1a
a		K2 0.429 0.438 0.716	<u>la</u>
Cm- KSiH ₈	a = 7.377	H1 0.394 0.383 0.115	4b

Table S3. Structural information of K-Si-H compounds under different pressures.

100 GPa	b = 7.928	H2 0.471 0.134 0.946	4b
	c = 3.041	H3 0.555 0.319 0.391	4b
	$\alpha = \gamma = 90$	H4 0.596 0.150 0.294	4b
	$\beta = 66.01$	H5 0.462 -0.229 0.965	4b
		K1 0.261 -0.226 0.671	4b
		H11 0.105 -0.000 0.778	2a
		H12 0.849 -0.000 0.710	2a
		H13 0.408 -0.000 0.384	2a
		H14 0.275 -0.000 0.139	2a
		H15 0.608 -0.000 0.796	2a
		H16 0.410 -0.000 0.631	2a
		Si1 0.049 -0.000 0.316	2a
		Si2 0.714 -0.000 0.251	2a

Reference

[1] M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).