Supplementary information for:

Sniffing out camphor: the fine balance between hydrogen bonding and London dispersion in the chirality recognition with α -fenchol

María Mar Quesada-Moreno,*^{a,b}+ Mariyam Fatima,^{a,c}+ Robert Medel,*^d+ Cristóbal Pérez,^{a,e} Melanie Schnell*^{a,f}

^a Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. E-mail: <u>melanie.schnell@desy.de</u>, <u>mqmoreno@uqr.es</u>

^b Present address: Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.

^c Present address: I. Institute of Physics, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany.

^d Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany. E-mail: <u>rmedel@gwdg.de</u>

^e Present address: Departamento de Química Física y Química Inorgánica, Facultad de Ciencias & I.U. CINQUIMA, Universidad de Valladolid, E-47011 Valladolid, Spain.

^f Christian-Albrechts-Universität zu Kiel, Institut für Physikalische Chemie, Max-Eyth-Straße 1, 24118 Kiel, Germany. E-mail: <u>melanie.schnell@desy.de</u>

⁺ These authors contributed equally to this work.

Contents:

Figure S1. RR-A-a-(I) and SR-A-b-(I) structures highlighting the main interactions between them 1
Figure S2. NCI plots and scatter graphs for the RR and SR complexes below 2.0 kJ/mol 2
Table S1. Rotational parameters calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory forthe <i>RR</i> complexes lower than 5.0 kJ/mol
Table S2. Rotational parameters calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory forthe SR complexes lower than 5.0 kJ/mol10
Table S3. Experimental vibrational fundamental transitions in cm ⁻¹ and assignments
Table S4. Structural hydrogen bond parameters for camphor complexes at B3LYP-D3(BJ)/def2-TZVP level
Table S5 . SAPT(0) energies for the <i>RR</i> and <i>SR</i> complexes below 2.0 kJ/mol and comparison withthe SAPT(0) energies from other works12
Table S6 . Observed frequencies and residuals (MHz) for the <i>R</i> -camphor - <i>R</i> -fenchol complex for $J'K_{-1}K_{+1} \leftarrow J''K_{-1}K_{+1}$ transitions
Table S7 . Observed frequencies and residuals (MHz) for the <i>S</i> -camphor - <i>R</i> -fenchol complex for $J'K_{-1}K_{+1} \leftarrow J''K_{-1}K_{+1}$ transitions
Gaussian input and optimized coordinates for SR-A-b-(I) and RR-A-a-(I)
Number of isomers found with each conformational search

Figure S1. *RR*-A-a-(I) and *SR*-A-b-(I) structures highlighting the main interactions between them.

RR-A-a-(I)

SR-A-b-(I)

Figure S2. NCI plots and scatter graphs for the *RR* and *SR* complexes below 2.0 kJ/mol.

RR-A-a-(I)

8

	ΔE^{a}	A ^b	B ^b	C ^b	B–C ^c	$\mu_{a}/\mu_{b}/\mu_{c}^{d}$
RR-A-a-(I)	0.0	581.1	156.1	149.5	6.6	4.0/0.8/1.8
RR-A-c-(II)	0.7	597.6	155.4	147.8	7.6	4.3/0.2/2.4
RR-A-b-(III)	1.3	629.9	135.2	132.6	2.6	3.6/1.1/1.1
RR-B-b-(IV)	2.0	593.9	160.4	151.0	9.4	3.5/1.3/2.1
<i>RR</i> -B-a-(V)	2.4	598.3	145.2	141.2	4.0	3.3/1.0/1.1
RR-B-a-(VI)	2.8	560.4	160.5	155.4	5.1	2.4/0.7/0.9
RR-A-d-(VII)	3.0	625.0	135.3	132.4	2.9	4.7/1.2/0.1
RR-C-a-(VIII)	3.1	580.0	152.4	145.6	6.8	2.6/0.4/0.1
RR-B-d-(IX)	3.3	576.4	161.7	153.1	8.6	4.3/0.6/2.4
RR-A-a-(X)	3.5	557.4	165.4	156.8	8.6	3.3/1.0/1.1
RR-B-c-(XI)	3.5	612.9	145.0	140.3	4.7	3.5/1.7/0.6
RR-C-a-(XII)	3.6	583.1	144.3	139.2	5.1	3.4/0.9/0.3
RR-B-c-(XIII)	3.7	578.1	160.2	154.9	5.3	2.3/0.2/1.7
RR-C-c-(XIV)	3.7	593.6	153.2	146.3	6.9	2.6/1.2/0.4
RR-A-b-(XV)	4.5	661.8	131.3	126.5	4.8	3.5/0.8/1.3
RR-B-d-(XVI)	4.5	584.1	155.2	144.4	10.7	3.5/0.9/1.5
RR-C-c-(XVII)	4.8	588.9	146.8	139.9	6.9	3.0/0.2/0.1
RR-B-d-(XVIII)	4.9	600.1	136.2	129.5	6.7	4.8/0.5/1.4

Table S1. Rotational parameters calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory for the *RR* complexes lower than 5.0 kJ/mol.

 a ΔE is the calculated zero-point corrected energy difference to the global minimum isomer within the diastereomeric dimer in kJ/mol.

^b A, B and C are the rotational constants in MHz.

 c B–C is the difference between the rotational constants B and C in MHz.

 $^{d}\mu_{\alpha}$ (α = a, b or c) are the absolute values of the electric dipole moment components in Debye.

	ΔE^{a}	A ^b	B ^b	C ^b	B–C ^c	$\mu_{a}/\mu_{b}/\mu_{c}^{d}$
<i>SR</i> -A-b-(I)	0.0	598.5	161.5	152.0	9.5	3.5/1.1/1.9
SR-A-d-(II)	1.4	581.1	163.2	153.9	9.3	4.3/0.5/2.2
SR-A-a-(III)	1.8	600.8	135.8	131.7	4.1	3.7/0.5/1.1
SR-B-b-(IV)	2.6	615.7	148.9	146.9	2.0	2.8/0.5/1.8
<i>SR</i> -A-a-(V)	2.6	562.6	153.2	148.7	4.5	2.4/0.6/1.0
<i>SR</i> -B-a-(VI)	2.6	575.1	154.2	146.7	7.6	3.8/1.3/1.6
SR-A-c-(VII)	2.6	590.5	149.0	143.8	5.3	2.9/0.7/1.3
SR-B-b-(VIII)	3.4	637.1	135.3	131.2	4.1	3.6/1.9/0.3
SR-B-a-(IX)	3.4	580.4	153.4	144.2	9.3	3.2/1.1/0.7
SR-B-c-(X)	3.5	588.3	153.5	145.5	8.0	4.2/0.2/2.4
SR-B-c-(XI)	3.5	588.8	153.8	146.0	7.8	4.2/0.1/2.5
SR-C-a-(XII)	3.7	581.3	156.2	149.5	6.7	3.0/1.0/0.3
SR-C-b-(XIII)	3.9	599.5	146.1	141.0	5.2	3.1/1.2/0.5
SR-C-a-(XIV)	4.7	583.4	148.8	144.0	4.8	3.4/1.4/0.7
SR-B-d-(XV)	4.9	561.7	159.6	151.5	8.1	2.4/0.2/1.4

Table S2. Rotational parameters calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory for the SR complexes lower than 5.0 kJ/mol.

 a ΔE is the calculated zero-point corrected energy difference to the global minimum isomer within the diastereomeric dimer in kJ/mol. ^b A, B and C are the rotational constants in MHz.

 c *B*–*C* is the difference between the rotational constants *B* and *C* in MHz.

 d μ_{α} (α = a, b or c) are the absolute values of the electric dipole moment components in Debye.

Table S3. Experimental vibrational fundamental transitions in cm^{-1} and assignments.

Wavenumber (cm ⁻¹)	Assignment
3675	fenchol monomer
3666	fenchol monomer
3517	<i>SR</i> -A-b-(I)
3504	RR-A-a-(I)
3499	fenchol dimer

	<i>α</i> (C2=O··H)	β(O…H–O)	<i>τ</i> (C3−C2=O…H)	<i>d</i> (O…H)	d(H–O)
RR-A-a-(I)	113	159	19	1.905	0.972
RR-A-c-(II)	128	163	-156	1.908	0.971
RR-A-b-(III)	110	166	-16	1.873	0.972
RR-B-b-(IV)	110	159	-35	1.922	0.971
<i>SR</i> -A-b-(I)	109	155	31	1.940	0.971
<i>SR</i> -A-d-(II)	127	159	40	1.934	0.969
SR-A-a-(III)	110	166	-9	1.866	0.973

Table S4. Structural hydrogen bond parameters for camphor complexes at B3LYP-D3(BJ)/def2-TZVP level. Angles are given in °, distances in Å.

Table S5. A) SAPT(0) energies for the *RR* and *SR* complexes below 2.0 kJ/mol and comparison with the SAPT(0) energies from other works [refs. 18 and 20 in the manuscript]. The energies are given in kJ/mol. B) Percentage relative to the total energy for the electrostatic, induction and dispersion components of the SAPT energies. C) Percentage relative to the overall attractive interactions for the electrostatic, induction and dispersion components of the SAPT energies.

A)	$\Delta E_{\rm elect}$	ΔE_{ind}	ΔE_{disp}	ΔE_{exch}	$\Delta E_{\rm tot}$
RR-A-a-(I)	-47.78	-16.28	-32.52	56.51	-40.07
RR-A-c-(II)	-47.64	-15.87	-33.25	57.33	-39.44
RR-A-b-(III)	-51.79	-16.95	-27.45	56.77	-39.42
RR-B-b-(IV)	-44.24	-15.19	-34.30	56.08	-37.64
<i>SR</i> -A-b-(I)	-46.78	-15.00	-35.07	56.45	-40.40
SR-A-d-(II)	-43.88	-14.24	-34.74	53.31	-39.55
SR-A-a-(III)	-52.40	-17.20	-26.06	56.31	-39.35
Camphor-H ₂ O	-49.2	-14.6	-11.6	43.6	-31.8
Camphor-MeOH-I	-45.8	-14.1	-14.3	44.2	-30.0
Camphor-EtOH-I	-47.4	-14.3	-18.6	47.2	-33.1

В)	ΔE_{elect}	ΔE_{ind}	$\Delta E_{ m disp}$	ΔE_{exch}
RR-A-a-(I)	1.19	0.41	0.81	1.41
RR-A-c-(II)	1.21	0.40	0.84	1.45
RR-A-b-(III)	1.31	0.43	0.70	1.44
<i>RR</i> -B-b-(IV)	1.18	0.40	0.91	1.49
SR-A-b-(I)	1.16	0.37	0.87	1.40
SR-A-d-(II)	1.11	0.36	0.88	1.35
SR-A-a-(III)	1.33	0.44	0.66	1.43
Camphor-H ₂ O	1.55	0.46	0.36	1.37
Camphor-MeOH-I	1.53	0.47	0.48	1.47
Camphor-EtOH-I	1.43	0.43	0.56	1.43

C)	ΔE_{elect}	ΔE_{ind}	ΔE_{disp}
RR-A-a-(I)	49	17	34
RR-A-c-(II)	49	16	34
RR-A-b-(III)	54	18	29
RR-B-b-(IV)	47	16	37
<i>SR</i> -A-b-(I)	48	15	36
SR-A-d-(II)	47	15	37
SR-A-a-(III)	55	18	27
Camphor-H ₂ O	65	19	15
Camphor-MeOH-I	62	19	19
Camphor-EtOH-I	59	18	23

Table S6. Observed frequencies and residuals (MHz) for the *R*-camphor - *R*-fenchol complex for $J'K_{-1}K_{+1} \leftarrow J''K_{-1}K_{+1}$ transitions.

J [´] K ₋₁ K ₊₁	J″K ₋₁ K″ ₊₁	Obs.	Res.	$J'K_{-1}K_{+1}$	J″K ₋₁ K″	Obs.	Res.	J [´] K [´] -1	$\vec{\mathbf{K}_{+1}}$ $\vec{\mathbf{J}}$ $\vec{\mathbf{K}_{-1}}$, Obs.	Res.
717	616	2077.96381	-0.00281	10 3 8	937	3004.51347	0.00146	13 1	13 12 1 12	3854.79076	-0.00044
707	606	2097.87041	-0.00265	10 3 7	936	3004.94475	-0.00155	20 5	15 20 4 16	3860.05639	0.01822
726	625	2101.52369	0.00037	10 1 9	918	3032.85969	0.00850	13 0	13 12 0 12	3878.32664	0.00193
752	651	2102.39049	0.01084	624	514	3049.30155	0.00055	13 2	12 12 2 11	3899.49002	0.00687
753	652	2102.39049	0.01084	331	220	3053.97293	-0.01222	92	7 817	3900.56012	-0.00077
735	634	2102.73706	0.02083	330	220	3053.97293	-0.01277	13 2	11 12 2 10	3925.00884	0.00230
716	615	2124.25888	-0.00548	11 1 11	10 1 10	3263.11446	-0.00508	13 1	12 12 1 11	3939.26415	-0.00210
734	726	2155.82650	-0.01382	11 0 11	10 0 10	3287.23743	-0.00063	63	3 523	3953.38364	0.00266
616	505	2164.43388	-0.00073	918	808	3292.14246	-0.00192	63	4 524	3956.00650	0.00103
615	505	2303.48883	-0.00201	11 2 10	10 2 9	3300.69115	-0.00057	64	3 532	4816.18244	0.00969
818	717	2374.45720	-0.00515	11 6 5	10 6 4	3303.89582	-0.00909	64	2 532	4816.18244	0.00954
808	707	2396.07818	-0.00498	11 6 6	10 6 5	3303.89582	-0.00909	64	3 533	4816.18244	-0.00574
827	726	2401.48342	0.00079	11 5 7	10 5 6	3304.13605	0.00165	64	2 533	4816.18244	-0.00588
853	752	2402.78582	0.00639	11 5 6	10 5 5	3304.13605	0.00156	74	4 633	5116.43472	0.02090
854	753	2402.78582	0.00639	11 4 8	10 4 7	3304.56175	0.00238	74	3 633	5116.43472	0.02035
845	744	2402.92626	-0.02015	11 4 7	10 4 6	3304.56175	-0.00891	74	4 634	5116.43472	-0.02537
844	743	2402.92626	-0.02124	11 3 9	10 3 8	3305.20382	-0.01011	74	3 634	5116.43472	-0.02591
836	735	2403.25908	-0.00320	725	615	3334.00464	-0.00201	14 1	14 13 1 13	4150.37565	-0.01010
826	725	2407.81167	-0.00485	11 1 10	10 1 9	3335.27610	-0.00018	14 0	14 13 0 13	4173.04018	0.00317
817	716	2427.31056	-0.00392	12 0 12	11 0 11	3583.07424	0.00055	10 2	8 918	4183.66073	-0.00558
423	313	2512.93161	-0.00371	12 2 11	11 2 10	3600.17313	0.00950	14 2	13 13 2 12	4198.63640	-0.00231
919	818	2670.82429	-0.00184	12 4 8	11 4 7	3605.22041	0.00370	14 7	7 13 7 6	4205.03571	-0.00093
10 0 10	919	2689.96287	0.01266	12 3 10	11 3 9	3605.96657	0.00401	14 7	8 13 7 7	4205.03571	-0.00093
909	808	2693.74219	0.00701	12 3 9	11 3 8	3607.06474	0.01021	14 6	8 13 6 7	4205.30526	-0.01317
928	827	2701.34282	0.00396	826	716	3617.55476	-0.00404	14 6	9 13 6 8	4205.30526	-0.01317
927	826	2710.31335	-0.00321	10 1 9	909	3631.26165	0.00126	14 5	10 13 5 9	4205.78312	-0.00267
918	817	2730.18554	-0.00105	12 1 11	11 1 10	3637.42451	-0.00264	14 5	9 13 5 8	4205.78312	-0.00354
524	4 1 4	2826.46347	-0.00248	533	422	3653.99940	0.01358	14 4	10 13 4 9	4206.69349	-0.00990
817	707	2958.04718	0.00623	532	422	3653.99940	-0.00184	14 3	12 13 3 11	4207.57322	0.00009
10 1 10	919	2967.04933	0.00147	533	423	3655.13802	0.00665	44	0 330	4215.56614	-0.00211
10 0 10	909	2990.78667	-0.00617	532	423	3655.13802	-0.00877	44	1 330	4215.56614	-0.00211
10 4 6	945	3003.97144	-0.00949	827	717	3786.99582	-0.00333	44	0 331	4215.56614	-0.00267

Table S6. Continued.

$J'K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.	$J'K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.	$J'K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
4 4 1	331	4215.56614	-0.00266	10 6 4	10 5 5	4736.20034	0.00627	10 3 7	927	5140.59235	0.00311
734	624	4252.05878	0.02910	10 6 5	10 5 5	4736.20034	0.00627	10 3 8	928	5164.53567	-0.00265
735	625	4257.24562	-0.00241	10 6 4	10 5 6	4736.20034	0.00622	14 2 12	13 1 12	5330.97362	-0.00107
734	625	4257.36565	0.00202	10 6 5	10 5 6	4736.20034	0.00622	18 1 18	17 1 17	5331.18822	0.00258
12 1 11	11 0 11	4325.94568	0.01276	963	954	4736.37166	0.00397	18 0 18	17 0 17	5347.89910	-0.00836
15 1 15	14 1 14	4445.81751	-0.00180	963	955	4736.37166	0.00395	550	4 4 0	5377.10457	-0.00546
11 2 9	10 1 9	4467.55757	-0.00472	964	954	4736.37166	0.00397	550	4 4 1	5377.10457	-0.00546
15 2 14	14 2 13	4497.62097	0.00178	964	955	4736.37166	0.00395	551	4 4 0	5377.10457	-0.00546
15 7 8	14 7 7	4505.50407	0.00618	862	853	4736.49603	0.00062	551	4 4 1	5377.10457	-0.00546
15 7 9	14 7 8	4505.50407	0.00618	862	854	4736.49603	0.00062	18 2 17	17 2 16	5393.41495	0.00637
15 6 9	14 6 8	4505.83753	-0.00525	863	853	4736.49603	0.00062	18 4 14	17 4 13	5410.66110	-0.01062
15 6 10	14 6 9	4505.83753	-0.00524	863	854	4736.49603	0.00062	11 3 9	10 2 8	5431.57428	0.00536
15 5 11	14 5 10	4506.41518	-0.00092	16 1 16	15 1 15	4741.07972	-0.01447	11 3 8	10 2 8	5433.22062	0.00536
15 5 10	14 5 9	4506.41518	-0.00256	12 2 10	11 1 10	4752.95119	0.00000	18 1 17	17 1 16	5442.30152	0.00217
542	431	4515.88816	0.00494	16 0 16	15 0 15	4761.12409	0.01314	11 3 9	10 2 9	5468.67161	-0.00126
541	431	4515.88816	0.00491	16 2 15	15 2 14	4796.42048	0.00640	16 7 9	16 6 10	5596.03222	-0.00217
541	432	4515.88816	0.00105	16 3 13	15 3 12	4813.83556	-0.00229	16 7 10	16 6 10	5596.03222	-0.00217
542	432	4515.88816	0.00108	643	532	4816.18244	0.00969	16 7 9	16 6 11	5596.03222	-0.00223
836	726	4558.98840	0.00142	642	532	4816.18244	0.00954	16 7 10	16 6 1 1	5596.03222	-0.00223
835	726	4559.24908	0.00790	643	533	4816.18244	-0.00574	15 7 8	15 6 9	5596.44724	-0.00409
13 6 7	13 5 8	4735.28978	-0.00224	642	533	4816.18244	-0.00588	15 7 8	15 6 10	5596.44724	-0.00411
13 6 8	13 5 8	4735.28978	-0.00223	937	826	4845.44934	-0.00221	15 7 9	15 6 9	5596.44724	-0.00409
13 6 7	13 5 9	4735.28978	-0.00302	936	826	4845.95777	-0.00174	15 7 9	15 6 10	5596.44724	-0.00411
13 6 8	13 5 9	4735.28978	-0.00301	937	827	4861.36252	-0.00266	14 7 7	14 6 8	5596.79579	-0.00043
12 6 6	12 5 7	4735.66195	-0.00589	936	827	4861.87254	-0.00059	14 7 7	14 6 9	5596.79579	-0.00044
12 6 7	12 5 7	4735.66195	-0.00588	13 2 11	12 1 11	5040.52316	-0.00742	14 7 8	14 6 8	5596.79579	-0.00043
12 6 6	12 5 8	4735.66195	-0.00623	17 0 17	16 0 16	5054.62969	0.00087	14 7 8	14 6 9	5596.79579	-0.00044
12 6 7	12 5 8	4735.66195	-0.00623	12 2 1 1	11 1 11	5114.82001	0.00315	13 7 6	13 6 7	5597.08346	0.00545
11 6 5	11 5 6	4735.96444	-0.00003	744	633	5116.43472	0.02090	13 7 6	13 6 8	5597.08346	0.00544
11 6 6	11 5 6	4735.96444	-0.00003	743	633	5116.43472	0.02035	13 7 7	13 6 7	5597.08346	0.00545
11 6 5	11 5 7	4735.96444	-0.00018	744	634	5116.43472	-0.02537	13 7 7	13 6 8	5597.08346	0.00544
11 6 6	11 5 7	4735.96444	-0.00018	743	634	5116.43472	-0.02591	12 7 5	12 6 6	5597.29771	-0.00732

Table S6. Continued.

$J^{K}_{-1}K_{+1}$	J [″] K ₋₁ K [″] ₊₁	Obs.	Res.	$J K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.	$J^{K}_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
12 7 5	12 6 7	5597.29771	-0.00732	19 4 16	18 4 15	5711.37557	-0.00100	21 0 21	20 0 20	6227.00096	0.00914
12 7 6	12 6 6	5597.29771	-0.00732	19 3 17	18 3 16	5711.74648	0.00685	853	743	6278.01950	-0.00198
12 7 6	12 6 7	5597.29771	-0.00732	19 4 15	18 4 14	5711.93741	0.00966	854	743	6278.01950	-0.00198
11 7 4	11 6 5	5597.48269	-0.00230	19 3 16	18 3 15	5722.21636	-0.00625	853	744	6278.01950	-0.00253
11 7 4	11 6 6	5597.48269	-0.00230	12 3 9	11 2 9	5723.53328	0.01068	854	744	6278.01950	-0.00252
11 7 5	11 6 5	5597.48269	-0.00230	19 1 18	18 1 17	5741.36155	0.00310	21 2 20	20 2 19	6287.30117	0.00946
11 7 5	11 6 6	5597.48269	-0.00230	12 3 10	11 2 10	5773.94474	0.00104	14 3 11	13 2 11	6296.16349	-0.00536
10 7 3	10 6 4	5597.62467	-0.00032	20 1 20	19 1 19	5920.70345	-0.00589	21 8 13	20 8 12	6308.14966	-0.00122
10 7 3	10 6 5	5597.62467	-0.00032	16 2 14	15 1 14	5922.95085	0.00102	21 8 14	20 8 13	6308.14966	-0.00122
10 7 4	10 6 4	5597.62467	-0.00032	20 0 20	19 0 19	5934.01533	-0.01604	21 7 14	20 7 13	6308.76080	0.00447
10 7 4	10 6 5	5597.62467	-0.00032	752	642	5977.73351	-0.00150	21 7 15	20 7 14	6308.76080	0.00448
972	963	5597.72105	-0.01051	753	642	5977.73351	-0.00150	21 6 16	20 6 15	6309.68211	-0.00656
972	964	5597.72105	-0.01051	752	643	5977.73351	-0.00165	21 6 15	20 6 14	6309.68211	-0.00725
973	963	5597.72105	-0.01051	753	643	5977.73351	-0.00165	21 5 17	20 5 16	6311.26562	0.02316
973	964	5597.72105	-0.01051	13 3 11	12 2 10	6006.86515	-0.00569	21 5 16	20 5 15	6311.26562	-0.01280
871	862	5597.82098	0.01037	20 8 12	19 8 11	6007.64436	0.02121	21 3 19	20 3 18	6313.15126	0.00688
871	863	5597.82098	0.01037	20 8 13	19 8 12	6007.64436	0.02121	11 4 8	10 3 7	6316.09947	0.01278
872	862	5597.82098	0.01037	20 7 13	19 7 12	6008.14163	-0.00608	11 4 7	10 3 7	6316.09947	-0.00840
872	863	5597.82098	0.01037	20 7 14	19 7 13	6008.14163	-0.00608	11 4 8	10 3 8	6317.02095	-0.00798
15 2 13	14 1 13	5624.91649	-0.00249	20 6 15	19 6 14	6008.95713	0.00296	21 3 18	20 3 17	6329.87465	0.00027
19 1 19	18 1 18	5626.01415	-0.00051	20 6 14	19 6 13	6008.95713	0.00256	21 1 20	20 1 19	6337.59908	0.00256
19 0 19	18 0 18	5641.02240	0.00193	20 5 16	19 5 15	6010.30853	0.00902	14 3 12	13 2 12	6388.62335	0.00157
651	541	5677.43412	0.00578	20 5 15	19 5 14	6010.30853	-0.01405	15 8 7	15 7 8	6458.18838	0.00749
652	541	5677.43412	0.00578	13 3 10	12 2 10	6011.24069	-0.00006	15 8 7	15 7 9	6458.18838	0.00749
651	542	5677.43412	0.00575	20 3 18	19 3 17	6012.50248	0.02433	15 8 8	15 7 8	6458.18838	0.00749
652	542	5677.43412	0.00575	20 4 16	19 4 15	6013.31754	0.00340	15 8 8	15 7 9	6458.18838	0.00749
19 7 12	18 7 11	5707.55981	-0.00740	10 4 7	936	6016.47689	0.00327	12 8 4	12 7 5	6458.76299	0.01781
19 7 13	18 7 12	5707.55981	-0.00740	10 4 6	936	6016.47689	-0.00662	12 8 4	12 7 6	6458.76299	0.01781
19 6 14	18 6 13	5708.25824	-0.00158	20 3 17	19 3 16	6025.82507	-0.00032	12 8 5	12 7 5	6458.76299	0.01781
19 6 13	18 6 12	5708.25824	-0.00180	20 1 19	19 1 18	6039.80228	0.00042	12 8 5	12 7 6	6458.76299	0.01781
19 5 15	18 5 14	5709.42105	0.00540	13 3 11	12 2 11	6080.53493	0.00314	11 8 3	11 7 4	6458.86628	0.00084
19 5 14	18 5 13	5709.42105	-0.00905	17 2 15	16 1 15	6225.61199	0.01192	11 8 3	11 7 5	6458.86628	0.00084

Table S6. Continued.

$J'K_{-1}K_{+1}$	$J^{''}K_{-1}^{''}K_{+1}^{''}$	Obs.	Res.	$J'K_{-1}K_{+1}$	J ["] K ₋₁ K ["] ₊₁	Obs.	Res.	$J^{K}_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
11 8 4	11 7 4	6458.86628	0.00084	862	753	7139.27384	-0.00100	11 9 3	11 8 3	7320.18610	0.00254
11 8 4	11 7 5	6458.86628	0.00084	863	752	7139.27384	-0.00100	11 9 3	11 8 4	7320.18610	0.00254
18 2 16	17 1 16	6533.34887	-0.00105	863	753	7139.27384	-0.00100	17 3 15	16 2 15	7323.74963	-0.00418
660	550	6538.65245	0.00346	11 5 7	10 4 6	7178.64526	0.00256	25 1 25	24 1 24	7392.47997	-0.00153
660	551	6538.65245	0.00346	11 5 6	10 4 6	7178.64526	0.00242	18 3 15	17 2 15	7407.63293	0.01309
661	550	6538.65245	0.00346	11 5 7	10 4 7	7178.64526	-0.00733	963	853	7439.56456	-0.00631
661	551	6538.65245	0.00346	11 5 6	10 4 7	7178.64526	-0.00747	963	854	7439.56456	-0.00631
15 3 12	14 2 12	6578.21874	0.01899	14 4 11	13 3 10	7212.45648	0.00262	964	853	7439.56456	-0.00631
955	844	6578.28864	0.01151	14 4 10	13 3 10	7212.59694	-0.00052	964	854	7439.56456	-0.00631
954	844	6578.28864	0.01149	14 4 11	13 3 11	7216.82216	-0.00160	12 5 8	11 4 7	7478.72630	0.00632
954	845	6578.28864	0.00986	16 9 7	16 8 8	7319.48740	-0.01538	12 5 7	11 4 7	7478.72630	0.00597
955	845	6578.28864	0.00988	16 9 7	16 8 9	7319.48740	-0.01538	12 5 8	11 4 8	7478.72630	-0.01486
12 4 8	11 3 8	6615.40419	-0.00236	16 9 8	16 8 8	7319.48740	-0.01538	12 5 7	11 4 8	7478.72630	-0.01520
12 4 9	11 3 9	6617.01391	0.00334	16 9 8	16 8 9	7319.48740	-0.01538	15 4 11	14 3 11	7510.23264	0.01160
15 3 13	14 2 13	6698.39243	-0.00709	15 9 6	15 8 7	7319.70081	0.00529	15 4 12	14 3 12	7516.70974	0.00499
16 2 14	15 1 15	6707.73625	-0.00081	15 9 6	15 8 8	7319.70081	0.00529	19 3 16	18 2 16	7679.42256	-0.00560
761	651	6838.96511	-0.00076	15 9 7	15 8 7	7319.70081	0.00529	26 0 26	25 0 25	7692.06161	-0.00162
761	652	6838.96511	-0.00076	15 9 7	15 8 8	7319.70081	0.00529	770	660	7700.19209	0.00691
762	651	6838.96511	-0.00076	14 9 5	14 8 6	7319.84936	-0.00688	770	661	7700.19209	0.00691
762	652	6838.96511	-0.00076	14 9 5	14 8 7	7319.84936	-0.00688	771	660	7700.19209	0.00691
19 2 17	18 1 17	6846.63312	0.00141	14 9 6	14 8 6	7319.84936	-0.00688	771	661	7700.19209	0.00691
16 3 13	15 2 13	6857.34146	0.00144	14 9 6	14 8 7	7319.84936	-0.00688	10 6 4	954	7739.83836	-0.00956
10 5 6	945	6878.48845	-0.00078	13 9 4	13 8 5	7319.99556	0.00678	10 6 4	955	7739.83836	-0.00958
10 5 5	945	6878.48845	-0.00084	13 9 4	13 8 6	7319.99556	0.00678	10 6 5	954	7739.83836	-0.00956
10 5 5	946	6878.48845	-0.00507	13 9 5	13 8 5	7319.99556	0.00678	10 6 5	955	7739.83836	-0.00958
10 5 6	946	6878.48845	-0.00502	13 9 5	13 8 6	7319.99556	0.00678	13 5 9	12 4 8	7778.72158	0.02092
13 4 10	12 3 9	6914.18998	-0.00755	12 9 3	12 8 4	7320.09030	-0.00647	13 5 8	12 4 8	7778.72158	0.02014
13 4 9	12 3 9	6914.28275	0.00536	12 9 3	12 8 5	7320.09030	-0.00647	13 5 9	12 4 9	7778.72158	-0.02140
16 3 14	15 2 14	7010.04039	-0.00938	12 9 4	12 8 4	7320.09030	-0.00647	13 5 8	12 4 9	7778.72158	-0.02218
16 3 13	15 2 14	7024.65099	-0.02341	12 9 4	12 8 5	7320.09030	-0.00647	16 4 12	15 3 12	7806.97161	-0.00634
17 3 14	16 2 14	7133.72243	-0.00154	11 9 2	11 8 3	7320.18610	0.00254	26 1 25	25 1 24	7816.52347	-0.00472
862	752	7139.27384	-0.00100	11 9 2	11 8 4	7320.18610	0.00254	16 4 13	15 3 13	7816.61851	-0.00350

Table S6. Continued.

$J K_{-1} K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
26 7 20	25 7 19	7812.28249	0.01064
26 7 19	25 7 18	7812.28249	0.01049
26 6 21	25 6 20	7814.02867	-0.00749
26 6 20	25 6 19	7814.02880	-0.01491
26 5 21	25 5 20	7817.17331	0.00140
26 4 23	25 4 22	7820.59011	-0.00378
26 3 23	25 3 22	7856.71439	0.00069
27 0 27	26 0 26	7985.22097	0.00240

Table S7. Observed frequencies and residuals (MHz) for the *S*-camphor - *R*-fenchol complex for $J'K_{-1}K_{+1} \leftarrow J''K_{-1}K_{+1}$ transitions.

J [´] K ₋₁ K ₊₁	J″K ₋₁ K ₊₁	Obs.	Res.	$J K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.	$J'K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
514	404	2057.77177	0.01677	13 1 12	12 2 10	2937.51953	0.00721	12 7 6	11 7 5	3705.70307	0.00496
717	616	2126.59135	-0.00204	919	808	3031.92668	-0.00559	12 6 6	11 6 5	3706.04636	0.01793
707	606	2152.90822	-0.00237	10 1 10	919	3035.28913	0.00360	12 6 7	11 6 6	3706.04636	0.01794
726	625	2159.86303	0.00272	10 0 10	909	3064.29996	0.01355	12 5 8	11 5 7	3706.59063	0.00624
734	633	2162.30986	0.00097	10 2 9	928	3083.43156	0.00008	12 5 7	11 5 6	3706.59063	0.00525
725	624	2167.95023	0.00168	10 3 8	937	3089.87467	0.00221	12 4 9	11 4 8	3707.62227	0.01290
716	615	2191.55865	0.00134	10 3 7	936	3091.00764	0.00309	12 3 10	11 3 9	3708.74245	0.00293
616	505	2200.77852	0.00055	817	707	3091.36568	0.00225	12 3 9	11 3 8	3711.57404	0.00130
615	505	2396.09483	0.00059	10 2 8	927	3106.23801	-0.01535	12 2 10	11 2 9	3735.39886	-0.00985
818	717	2429.73384	0.00177	624	514	3122.33526	0.00138	12 1 11	11 1 10	3748.64523	-0.00305
808	707	2457.69408	-0.00158	10 1 9	918	3127.21633	-0.00035	827	717	3929.64602	0.00704
827	726	2467.91015	-0.01060	331	220	3142.26564	0.01799	928	817	3941.33507	0.01194
826	725	2479.93193	-0.00037	330	220	3142.26564	0.01655	13 1 13	12 1 12	3941.67815	0.00301
717	606	2480.16684	-0.00564	625	515	3251.68391	-0.00343	13 0 13	12 0 12	3967.17057	-0.00711
817	716	2503.83208	0.01075	624	515	3261.88695	-0.00487	927	817	3988.53985	-0.00531
422	312	2538.81069	0.00131	11 1 11	10 1 10	3337.68453	0.00644	13 2 12	12 2 11	4004.82762	-0.00098
423	313	2592.45300	0.00135	11 0 11	10 0 10	3366.10407	-0.00135	13 7 6	12 7 5	4014.66886	0.00654
919	818	2732.62691	-0.00705	11 2 10	10 2 9	3390.82886	-0.00635	13 7 7	12 7 6	4014.66886	0.00654
716	606	2740.45214	-0.00053	11 5 7	10 5 6	3397.46498	0.01296	13 6 7	12 6 6	4015.08769	0.00596
909	808	2761.49650	0.00304	11 5 6	10 5 5	3397.46498	0.01252	13 6 8	12 6 7	4015.08769	0.00598
928	827	2775.78233	-0.00333	11 3 9	10 3 8	3399.27301	-0.00417	13 5 9	12 5 8	4015.80197	0.01394
963	862	2779.13558	-0.00627	11 3 8	10 3 7	3401.10283	-0.00612	13 5 8	12 5 7	4015.80197	0.01183
964	863	2779.13558	-0.00627	725	615	3411.28993	0.00187	13 4 10	12 4 9	4017.07486	0.00028
955	854	2779.37225	-0.00508	918	808	3449.39780	0.00112	13 4 9	12 4 8	4017.19932	-0.00895
954	853	2779.37225	-0.00514	11 1 11	10 0 10	3579.12838	0.01234	13 3 11	12 3 10	4018.23861	-0.00147
946	845	2779.82917	0.00893	726	616	3588.31446	0.00284	13 3 10	12 3 9	4022.46332	0.00476
945	844	2779.82917	-0.00039	12 1 12	11 1 11	3639.81199	0.00425	13 2 11	12 2 10	4050.75064	-0.00762
937	836	2780.54896	0.00887	12 0 12	11 0 11	3667.02438	-0.00506	13 1 12	12 1 11	4058.45132	0.01658
936	835	2781.19906	-0.00351	826	716	3699.66583	0.00277	634	523	4065.39844	-0.00322
918	817	2815.72912	0.00021	12 8 4	11 8 3	3705.45912	-0.02550	633	523	4065.52066	-0.00206
523	413	2831.80066	-0.00090	12 8 5	11 8 4	3705.45912	-0.02550	634	524	4070.51299	-0.00427
524	4 1 4	2919.74252	0.00100	12 7 5	11 7 4	3705.70307	0.00496	633	524	4070.63871	0.00038

Table S7. Continued.

J´K ₋₁ K ₊₁	J″K ₋₁ K ₊₁	Obs.	Res.	$J'K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.	$J K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
14 0 14	13 0 13	4266.69266	-0.00326	541	432	4646.24635	-0.00635	10 3 7	927	5274.38949	-0.00002
10 2 8	918	4279.06657	-0.00304	836	725	4674.15174	-0.00179	10 3 8	928	5319.15448	0.00211
14 2 13	13 2 12	4311.39217	0.01496	835	725	4674.81711	-0.00101	10 3 7	928	5321.61948	0.00794
14 5 10	13 5 9	4325.04547	-0.02336	15 2 13	14 2 12	4682.12910	-0.00237	12 2 11	11 1 11	5342.32732	-0.00899
14 5 9	13 5 8	4325.04547	-0.02757	836	726	4692.44278	-0.00347	14 2 12	13 1 12	5479.64012	-0.00139
14 4 11	13 4 10	4326.65654	0.00656	835	726	4693.10727	-0.00357	550	4 4 0	5532.67589	-0.00183
14 4 10	13 4 9	4326.87787	0.00126	16 1 16	15 1 15	4845.77814	0.00592	550	4 4 1	5532.67589	-0.00184
14 3 12	13 3 11	4327.75476	-0.00050	16 0 16	15 0 15	4864.44078	-0.01645	551	4 4 0	5532.67589	-0.00183
14 3 11	13 3 10	4333.82931	-0.00404	12 2 10	11 1 10	4869.57344	0.00273	551	4 4 1	5532.67589	-0.00184
4 4 1	330	4337.50033	-0.00100	16 2 15	15 2 14	4923.48814	0.00098	18 2 17	17 2 16	5534.18523	0.00189
4 4 0	330	4337.50033	-0.00102	16 6 11	15 6 10	4942.57216	0.00032	18 3 16	17 3 15	5565.36034	-0.01121
4 4 0	331	4337.50033	-0.00246	16 6 10	15 6 9	4942.57216	0.00011	11 3 8	10 2 8	5569.23362	-0.01148
4 4 1	331	4337.50033	-0.00245	16 4 13	15 4 12	4946.14944	0.00727	18 3 15	17 3 14	5585.54152	0.00162
14 2 12	13 2 11	4366.40384	0.00826	16 3 14	15 3 13	4946.72278	0.00602	18 1 17	17 1 16	5594.65902	-0.00748
14 1 13	13 1 12	4367.47241	-0.01597	16 4 12	15 4 11	4946.72278	-0.00209	11 3 9	10 2 9	5635.00193	0.00385
735	624	4370.80822	-0.00380	643	532	4954.95522	0.02168	11 3 8	10 2 9	5639.29448	0.00546
734	624	4371.11320	-0.00124	642	532	4954.95522	0.02115	19 0 19	18 0 18	5759.83763	0.01089
735	625	4381.01073	-0.00577	643	533	4954.95522	-0.01869	15 2 13	14 1 13	5794.28293	-0.00166
734	625	4381.31455	-0.00437	642	533	4954.95522	-0.01922	19 2 18	18 2 17	5838.97177	-0.00262
11 2 10	10 1 9	4472.63507	-0.00916	16 3 13	15 3 12	4958.32142	-0.00233	651	541	5841.42762	-0.00228
15 1 15	14 1 14	4544.64861	0.00163	13 1 12	12 0 12	4962.99458	-0.00214	652	541	5841.42762	-0.00228
15 0 15	14 0 14	4565.73353	-0.00597	937	826	4974.76393	0.00261	651	542	5841.42762	-0.00239
11 2 9	10 1 9	4572.38579	0.00872	936	826	4976.08745	-0.00094	652	542	5841.42762	-0.00239
15 6 10	14 6 9	4633.35777	0.00843	11 2 10	10 1 10	4982.04971	0.00993	12 3 9	11 2 9	5860.29877	0.00505
15 6 9	14 6 8	4633.35777	0.00833	16 1 15	15 1 14	4983.04664	0.00071	19 4 16	18 4 15	5876.22235	0.00571
15 5 11	14 5 10	4634.44729	0.01465	13 2 12	12 1 11	4988.58894	0.00483	946	835	5880.12440	0.00315
15 5 10	14 5 9	4634.44729	0.00667	16 2 14	15 2 13	4997.76924	-0.01114	945	835	5880.12440	-0.01199
15 3 13	14 3 12	4637.21656	-0.04110	937	827	5005.06891	0.00332	946	836	5880.78921	0.00337
15 3 12	14 3 11	4645.76016	-0.00590	17 4 14	16 4 13	5256.08998	0.03077	945	836	5880.78921	-0.01177
542	431	4646.24635	0.00385	17 3 15	16 3 14	5256.08998	-0.00962	19 1 18	18 1 17	5898.84992	-0.00037
541	431	4646.24635	0.00375	17 4 13	16 4 12	5256.95795	0.00688	19 3 16	18 3 15	5900.26685	-0.00177
542	432	4646.24635	-0.00624	17 3 14	16 3 13	5271.56910	0.00275	19 2 17	18 2 16	5942.61286	0.00177

Table S7. Continued.

J [´] K ₋₁ K ₊₁	$J^{''}K_{-1}^{''}K_{+1}^{''}$	Obs.	Res.	$J^{K}_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.	$J^{K}_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
12 3 10	11 2 10	5952.90514	0.00274	13 8 6	13 7 7	6647.17279	0.00844	862	752	7345.35862	0.01334
20 0 20	19 0 19	6058.27159	-0.01061	12 8 4	12 7 5	6647.44008	0.00504	862	753	7345.35862	0.01333
16 2 14	15 1 14	6116.35479	0.01082	12 8 4	12 7 6	6647.44008	0.00504	863	752	7345.35862	0.01334
13 3 10	12 2 10	6147.34689	0.00333	12 8 5	12 7 5	6647.44008	0.00504	863	753	7345.35862	0.01333
752	642	6150.16145	-0.00029	12 8 5	12 7 6	6647.44008	0.00504	11 5 7	10 4 6	7384.51027	0.01728
753	642	6150.16145	-0.00028	15 3 12	14 2 12	6709.79908	0.00993	11 5 6	10 4 6	7384.51027	0.01658
752	643	6150.16145	-0.00082	660	550	6727.84794	-0.00268	11 5 7	10 4 7	7384.51027	-0.01802
753	643	6150.16145	-0.00081	660	551	6727.84794	-0.00268	11 5 6	10 4 7	7384.51027	-0.01871
20 3 18	19 3 17	6183.43585	-0.00488	661	550	6727.84794	-0.00268	14 4 10	13 3 10	7411.86265	0.00524
20 4 17	19 4 16	6186.44594	0.00522	661	551	6727.84794	-0.00268	24 3 22	23 3 21	7416.73038	0.01483
10 4 7	937	6189.23331	-0.00130	955	844	6767.49817	0.00361	24 6 19	23 6 18	7419.05327	0.02484
20 3 17	19 3 16	6215.74460	-0.00224	954	844	6767.49817	0.00352	24 6 18	23 6 17	7419.05327	0.00442
13 3 11	12 2 11	6273.15947	-0.00837	954	845	6767.49817	-0.00230	14 4 11	13 3 11	7422.68541	-0.00340
13 3 10	12 2 11	6284.51314	0.00266	955	845	6767.49817	-0.00221	24 5 19	23 5 18	7423.87441	-0.00239
21 0 21	20 0 20	6356.80331	-0.00477	12 4 9	11 3 8	6801.64733	-0.00559	24 4 21	23 4 20	7427.95913	0.00081
14 3 12	13 2 11	6412.98965	-0.00829	12 4 8	11 3 8	6801.80054	-0.00330	24 4 20	23 4 19	7437.42920	-0.00802
17 2 15	16 1 15	6446.47236	0.00226	12 4 9	11 3 9	6805.94383	-0.00003	24 2 22	23 2 21	7503.60183	-0.00421
853	743	6458.86247	0.00565	12 4 8	11 3 9	6806.08935	-0.00542	18 3 15	17 2 15	7532.11561	-0.01967
854	743	6458.86247	0.00568	15 3 13	14 2 13	6921.97293	-0.00203	25 1 25	24 1 24	7547.99109	0.00229
854	744	6458.86247	0.00374	761	651	7036.60351	-0.00083	25 0 25	24 0 24	7551.79540	0.00377
853	744	6458.86247	0.00371	761	652	7036.60351	-0.00083	17 3 15	16 2 15	7583.69581	-0.00616
11 4 8	10 3 7	6495.15884	0.00634	762	651	7036.60351	-0.00083	963	853	7654.06984	0.00583
11 4 7	10 3 7	6495.22384	-0.00421	762	652	7036.60351	-0.00083	964	853	7654.06984	0.00583
11 4 8	10 3 8	6497.61159	-0.00008	10 5 6	945	7076.05772	0.00774	963	854	7654.06984	0.00580
21 2 19	20 2 18	6569.52463	0.01390	10 5 5	945	7076.05772	0.00747	964	854	7654.06984	0.00580
14 8 6	14 7 7	6646.81539	-0.01159	10 5 6	946	7076.05772	-0.00740	25 2 24	24 2 23	7659.79654	0.00190
14 8 6	14 7 8	6646.81539	-0.01159	10 5 5	946	7076.05772	-0.00766	25 1 24	24 1 23	7702.49702	-0.02041
14 8 7	14 7 7	6646.81539	-0.01159	13 4 9	12 3 9	7107.43650	-0.00286	15 4 12	14 3 12	7731.26585	-0.00646
14 8 7	14 7 8	6646.81539	-0.01159	13 4 10	12 3 10	7114.26832	-0.01060	25 4 21	24 4 20	7750.78336	-0.00135
13 8 5	13 7 6	6647.17279	0.00844	24 1 24	23 1 23	7248.24534	0.00431	25 3 22	24 3 21	7801.51669	-0.00442
13 8 5	13 7 7	6647.17279	0.00844	16 3 14	15 2 14	7251.10452	0.01498	25 2 23	24 2 22	7813.01921	0.00748
13 8 6	13 7 6	6647.17279	0.00844	17 3 14	16 2 14	7259.78795	0.02054	18 3 16	17 2 16	7920.04057	-0.01491

Table S7. Continued.

$J'K_{-1}K_{+1}$	J″K ₋₁ K ₊₁	Obs.	Res.
770	660	7923.01913	-0.00158
770	661	7923.01913	-0.00158
771	660	7923.01913	-0.00158
771	661	7923.01913	-0.00158
10 6 4	954	7962.75412	0.00497
10 6 4	955	7962.75412	0.00488
10 6 5	954	7962.75412	0.00497
10 6 5	955	7962.75412	0.00488

%nprocshared=12 %mem=24GB # b3lyp empiricaldispersion=gd3bj def2tzvp density=current geom=connectivity int=ultrafine output=pickett opt=tight freq=vibrot

Gaussian input and optimized coordinates for SR-A-b-(I)

01			
C	2.07004100	-0.01772100	1.53276800
Č	2.72974100	0.70860200	0.31742900
Ċ	2.84503800	-1.51028100	-0.20187400
Ċ	2.18811400	-1.52730300	1.19213700
Н	1.04111700	0.30792700	1.68015100
Н	2.61768500	0.24195100	2.43846400
Н	1.21813900	-2.02344200	1.16708400
Н	2.80050000	-2.05531600	1.92138400
С	3.83737600	-0.31329400	-0.10324200
С	1.78035200	-0.98290500	-1.17504800
Н	3.29541200	-2.45580100	-0.50117700
С	3.10344300	2.15074100	0.55972100
Н	3.80420900	2.23698500	1.39162800
Н	2.21691400	2.73934500	0.79871000
Н	3.56051400	2.59689000	-0.32456200
С	1.70838400	0.48945600	-0.78837200
0	0.95614000	1.32011400	-1.24789600
С	-4.03218400	-1.08416600	-0.82841200
С	-2.79105500	-1.26819000	0.07641100
С	-3.79773400	0.59263700	0.89768100
С	-4.76771000	0.13372300	-0.20486400
Н	-3.73892700	-0.91918700	-1.86336000
Н	-4.65180700	-1.98223000	-0.79748800
Н	-4.99643500	0.91258100	-0.92899700
Н	-5.71376600	-0.17192000	0.24595700
C	-3.32544400	-0.77115900	1.43141300
Н	-2.55343400	-0.71213100	2.19974600
Н	-4.14299000	-1.38768600	1.81051100
C	-1./9302500	-0.14118/00	-0.24902900
Н	-0.88805400	-0.31129900	0.34929000
C	-2.49361300	1.1/2/6000	0.27730900
H	-4.25133900	1.26566900	1.626/0/00
C II	-2.1/518600	-2.65095100	0.02963700
н	-2.90560000	-3.41/43900	0.29847700
н	-1.80501000	-2.8/35/400	-0.9/330000
	-1.33427800	-2./3043100	0.72449100
L L	-1.03/00200	1.83033200	1.30108800
	-0.00004400	2.12094500	1 7/100200
п	-2.12318000	1 1722000	2 20882000
Ċ	-2 732/3500	2 10751200	-0 8302900
н	-2.73243500	3 00/96800	-0.83029300
н	-1 78704300	2 64071800	-0.40430200
н	-3 19628600	1 76030000	-1 71082900
0	-1 44841900	-0 15957100	-1 61904300
Ĥ	-0 70398200	0 44993200	-1 74876900
н	0.80192600	-1 45417200	-1 08187000
н	2 07222000	-1 06370800	-2 22291800
Ċ	4.51412400	0.04810100	-1.42895000
й	5.17837700	0.90323100	-1.29417700
Н	5.12244000	-0.78615900	-1.78472500
H	3.81218100	0.30871200	-2.22036300
Ċ	4.93449600	-0.50822000	0.94226900
Ĥ	5.59338600	-1.32546400	0.63997500
Н	5.54744100	0.39095300	1.02587400
Н	4.55422500	-0.74196600	1.93398000

%nprocshared=12 %mem=24GB # b3lyp empiricaldispersion=gd3bj def2tzvp density=current geom=connectivity int=ultrafine output=pickett opt=tight freq=vibrot

Gaussian input and optimized coordinates for RR-A-a-(I)

01			
С	4.16470100	0.43741600	-1.12977100
С	3.01267400	0.77553200	-0.13219600
С	3.08627500	-1.50512000	-0.18090400
С	4.24246400	-1.11356600	-1.12068900
Н	3.96603900	0.84911200	-2.11950100
Н	5.08762700	0.89572800	-0.77523900
Н	4.11130300	-1.54219700	-2.11409000
Н	5.20302100	-1.46284200	-0.74525000
С	3.13337200	-0.39055600	0.90630200
С	1.78437100	-1.18405500	-0.93164700
Н	3.14015000	-2.52290900	0.20323400
С	2.98367500	2.20209000	0.36029500
Н	3.91709700	2.45944300	0.86327100
Н	2.84322700	2.89139700	-0.47315900
Н	2.16034800	2.36415200	1.05719600
С	1.77023700	0.33948300	-0.89160900
0	0.93478100	1.06767500	-1.37967600
С	-4.15957900	-1.02604600	-0.76447000
С	-2.95028300	-1.25351400	0.17298900
С	-3.80203700	0.73851700	0.84907300
С	-4.79497500	0.28966100	-0.23696100
Н	-3.83978700	-0.95703100	-1.80241300
Н	-4.85483200	-1.86382200	-0.68553900
Н	-4.94733100	1.03392700	-1.01557100
Н	-5.76906500	0.09706600	0.21673700
С	-3.45593200	-0.62078600	1.48173500
Н	-2.69085400	-0.57525200	2.25788500
Н	-4.32830000	-1.13759800	1.88688400
С	-1.85468400	-0.24119100	-0.20996200
Н	-0.97743300	-0.44504600	0.41921600
С	-2.44564900	1.16119200	0.21341100
Н	-4.20421100	1.49652900	1.52289000
С	-2.45535700	-2.68361600	0.22976400
Н	-3.25234900	-3.36497300	0.53638200
Н	-2.09381700	-3.00368500	-0.74931900
Н	-1.63240300	-2.78634900	0.94289500
C	-1.54686500	1.82176800	1.26479300
Н	-0.55295300	2.00495700	0.85103800
Н	-1.96130600	2.78305500	1.57857000
Н	-1.43082300	1.202/8500	2.155/5400
C	-2.58303300	2.12416600	-0.96481600
н	-3.15583900	3.00554000	-0.66532400
н	-1.59972900	2.46282800	-1.29551400
Н	-3.0/226500	1.66/93600	-1.821/3100
0	-1.49141100	-0.38524900	-1.56634300
н	-0.70823400	0.16/2/800	-1./2548400
н	0.88/63300	-1.56983700	-0.44705000
H	1.76218000	-1.54141500	-1.96208700
	1.96644700	-0.43752500	1.89682300
н	1.99086200	-1.36844900	2.46/15200
П Ц	2.0389/500	0.385/4100	2.00910100
	0.9885/500	-0.30400900	1 71202100
с ц	4.43033000	0.303/0000	7.11232100
Ц	4.43404200	0.47352100 _1 2010/200	2.400/2300
H	5 32546300	-0 29723800	1 10044000
	2.22270200	J.LJ, LJUUU	

Number of isomers found with each conformational search

The number of species found with each method was the following:

• ABC Cluster: We ran this program three times for each complex (*RR* and *RS*) using the three different fenchol conformations A, B, and C as inputs. Thus, we obtained 100 isomers each time and selected the 20 lowest-energy ones for further optimization. Number of optimized isomers: 20 * 3 * 2 = 120 isomers.

• GFN-xTB: We did the same as before. This time we obtained around 140 isomers each time, and we optimized the 20 lowest-energy ones. Number of optimized isomers: 20 * 3 * 2 = 120 isomers.

• GFN-xTB with its CREST driver: We ran this program once for each *RR* and *SR* complex, and we obtained 297 and 319 isomers, respectively. We optimized the 30 lowest-energy isomers for each *RR* and *SR* complex. Number of optimized isomers: 30 * 2 = 60.

• Manual conformational search: We focused the manual search mainly on complexes involving the most stable alcohol conformer (A fenchol). This search was supplemented by reoptimization of modified structures of the closely related fenchol-fenchone complex, which is another work in progress carried out by some of us.