Supporting Information for:

Catalytic formation of oxalic acid on the partially oxidised greigite $Fe_3S_4(001)$ surface

David Santos-Carballal,^{1,*} and Nora H de Leeuw^{1,2}

¹ School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

² Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The

Netherlands

Email: <u>D.Santos-Carballal@leeds.ac.uk</u>

Table of contents

- Linear response functions for the change in the number of *d* electrons on one Fe site of Fe₃S₄ as a function of a spherical potential.
- Bird's eye view of the non-planar potential energy surface representations of the surface free energies for all the coverages of O considered for termination Fe_A of the Fe₃S₄(001) surface.
- Unscaled and scaled wavenumbers for the fundamental vibrational modes calculated for a single CO₂ and H₂O molecules interacting with the partially oxidised 62.5O-Fe₃S₄(001) surface.
- Vibrational entropies calculated for the adsorbed species observed in the three modelled pathways at various temperatures.
- Entropy extracted from the thermodynamic tables for the isolated CO₂, H₂O, H₂C₂O₄ and O₂ molecules.
- Minimum energy pathways (MEPs) for the conversion of CO₂ and H₂O into H₂C₂O₄ on the partially oxidised 62.5O-Fe₃S₄(001) surface at various temperatures.

Figure SI1. Linear non-self-consistent (NSCF) and self-consistent response functions (SCF) for the change in the number of *d* electrons on one atomic (a) Fe_A and (b) Fe_B site of Fe_3S_4 as a function of an additional spherical potential (*V*).

Figure SI2. Bird's eye view of the non-planar potential energy surface representations of the surface free energies for all the coverages of O, indicated in the figure, considered for termination Fe_A of the $Fe_3S_4(001)$ surface. The red arrow indicates the direction for the bidimensional projection onto the plane formed by the temperature and ratio of partial pressures of H_2O and H_2S .

Table SI1. Unscaled and scaled wavenumbers for the fundamental vibrational modes calculated for a single CO₂ molecule interacting with the different adsorption sites considered for the partially oxidised 62.50-Fe₃S₄(001) surface. The presented vibrational modes are the asymmetric stretching (v_{asym}), symmetric stretching (v_{sym}) and average bending (δ) modes.

Adsorption site		0	S	Fe _A	Fe _B
Structural type		$\mu_3 - \eta^3$	μ ₂ –η²–(C, O)	η¹-0	η ¹ -0
v _{asym} (O=C=O) (cm ⁻¹)	Unscaled	1574	1750	2412	2353
	Scaled	1520	1690	2329	2272
v _{sym} (O=C=O) (cm ⁻¹)	Unscaled	1269	1126	1343	1323
	Scaled	1225	1088	1297	1278
δ(O=C=O) (cm⁻¹)	Unscaled	823	695	602	615
	Scaled	795	671	581	594

Table SI2. Unscaled and scaled wavenumbers for the fundamental vibrational modes calculated for a single H₂O molecule interacting with the different adsorption sites considered for the partially oxidised 62.5O-Fe₃S₄(001) surface. The presented vibrational modes are the asymmetric stretching (v_{asym}), symmetric stretching (v_{sym}) and average bending (δ) modes.

Adsorption site		Fe _A	Fe	, Fe _A	F	e _B
Туре		Molecular	Molecular	Dissociative	Molecular	Dissociative
Structural type		$\mu_3-\eta^3$	$\mu_4-\eta^4$	$\mu_3-\eta^3$	μ3-η ³	$\mu_3 - \eta^3$
v _{asym} (H−O−H) (cm ^{−1})	Unscaled	3602	3693	3749	3654	3724
	Scaled	3461	3549	3602	3511	3578
v _{sym} (H−O−H) (cm ⁻¹)	Unscaled	3177	2435	3493	2084	2690
	Scaled	3053	2339	3356	2003	2585
δ(H−O−H) (cm⁻¹)	Unscaled	1576	1527	840	1576	940
	Scaled	1514	1468	807	1514	904

Table SI3. Vibrational entropies calculated for the adsorbed species observed in the oxalate, carboxylate and bicarbonate pathways at 300 and 600 K. Adsorbed species are presented followed by the symbol * and saddle points are represented by capital letters.

Adsorption spacing	TS _{vib} (eV)	
Ausorption species	300 K	600 K
$2CO_2^* + H_2O^*$	0.133	0.682
$C_2O_4^* + H_2O^*$	0.167	0.759
$HC_{2}O_{4}^{*} + OH^{*}$	0.172	0.770
$H_2C_2O_4^* + O^*$	0.165	0.747
$CO_2H^* + CO_2^* + OH^*$	0.120	0.652
2CO ₂ H* + O*	0.125	0.654
$CO_3H^* + CO_2^* + H^*$	0.131	0.670
$CO_3H^* + CO_2H^*$	0.132	0.661
A	0.153	0.695
В	0.170	0.761
С	0.168	0.761
D	0.125	0.679
Ε	0.123	0.651
F	0.144	0.736
G	0.131	0.672
Н	0.131	0.668
1	0.158	0.707

Table SI4. Entropy extracted from the thermodynamic tables for the isolated CO_2 , H_2O , $H_2C_2O_4$ and O_2 molecules.

Adsorption species	<i>TS</i> (eV)		
	300 K	600 K	
CO ₂	0.667	1.518	
H ₂ O	0.588	1.326	
$H_2C_2O_4$	0.952	2.361	
O ₂	0.639	1.409	

Figure SI3. Minimum energy pathways (MEPs) for the conversion of CO_2 and H_2O into $H_2C_2O_4$ on the partially oxidised 62.5O-Fe₃S₄(001) surface at 0 K. Minimum states are denoted by bold lines and saddle point are represented by narrow lines linked by dashed lines. Energies are referenced to the isolated $2CO_2(g) + H_2O(g)$ molecules, including the surface slab. Adsorbed species are presented followed by the symbol *.

Figure SI4. Minimum energy pathways (MEPs) for the conversion of CO_2 and H_2O into $H_2C_2O_4$ on the partially oxidised 62.5O-Fe₃S₄(001) surface at 600 K. Minimum states are denoted by bold lines and saddle point are represented by narrow lines linked by dashed lines. Energies are referenced to the isolated $2CO_2(g) + H_2O(g)$ molecules, including the surface slab. Adsorbed species are presented followed by the symbol *.