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Flory Theory.  Flory12 developed a lattice model and arrived at expression for the entropy of 

mixing between a solvent and a polymer that is different from Gibbs’ entropy of mixing 
expression.  For a solution of n1 molecules of the solvent and n2 molecules of the polymer, the 
increase in entropy due to mixing is 
 
  ∆𝑆 = −𝑘!(𝑛"𝑙𝑛𝑓" + 𝑛#𝑙𝑛𝑓#) (S1) 
 
where D means final minus initial values and kB is the Boltzmann constant, and f the volume 
fraction of the solvent and the polymer, which can be expressed as 
 
 𝑓" =

$!
$!%&$"

,  𝑓# =
&$"

$!%&$"
 (S2) 

 
with Z denoting the volume ratio of the polymer molecule to the solvent molecule.  Equation (S1) 
can also be derived from the free-volume concept.13  Its main difference from the classical Gibbs 
entropy of mixing expression is that the volume fraction is used instead of the mole fraction.  
Equation (S1) degenerates into the Gibbs expression if Z=1.   
 

In addition to the entropy of mixing, the mixing of the solvent with the polymer also causes 
a change in the enthalpy, which can be expressed as  

 
∆𝐻 = 𝑘!𝑇𝜒𝑛"𝑓# (S3) 

 
where c is a parameter depending on the solvent and the polymer.  c>0 means the mixing is 
endothermic and c<0 exothermic.  Most polymer-solvent mixing has c>0. We note here that 
although Eq.(S3) is called the enthalpy change, no pressure effect was considered in the 
derivation of the above expression.  Inside hydrogels, the pressure is usually much higher than 
the ambient pressure. This pressure effect is not included in Eq. (S3).   

 
For a polymer, Flory’s10 analysis of experimental data showed that the elasticity arises from 

the polymer configurational entropy change during stretching, for which Flory and Rehner14 
derived the following expression 
 
 ∆𝑆 = − '#($

#
/𝑎)# + 𝑎*# + 𝑎+# − 3 − 𝑙𝑛(𝑎)𝑎*𝑎+)2 (S4) 
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where ax (y&z) is the stretching ratio in the direction represented by the subscript and ne is the 
effective number of crosslinked units that excludes the two free ends of a polymer chain.  ne is 
related to the actual cross-linking units n and the number of molecules n2 through 
 
 𝜈, = 𝜈 − 2𝑛# = 𝜈(1 − 2𝑛#/𝜈) = 𝜈(1 − 2𝑀-/𝑀)   (S5) 
 
where Mc and M are the molecular weight of a crosslinked segment and that of the polymer 
molecular before crosslinking, respectively.  Combining Eqs.(S1), (S3), and (S4), the total change 
in the Gibbs free energy for isotropic swelling is Eq. (1).   

 
 

Helmholtz Free Energy of Combined System: From Eq.(6), we can express the derivative of 
the Helmholtz free energy of the hydrogel subsystem as 
 

 d𝐹 = 9	;.(∆1%&')
.3

<
4,6,$(

	+ ;.7∆1)*8
.3

<
4,6,$(

− 𝑝>𝑑𝑉	 

 

                      +		A;.(∆1%&')
.4

<
3,6,$&

	+ ;.7∆1)*8
.4

<
4,6,$&

− 𝑆-B 𝑑𝑇	  

 
                     +𝜇9:𝑑𝑛9: + 𝜇;:𝑑𝑛;:  + ∑ 𝜇<𝑑𝑛<< + ∑ 𝑒𝑧<𝑛<𝑑𝜑< + 𝑒𝑧;:𝑛;:𝑑𝜑 (S6) 
 
Similarly, the Helmholtz free energy of the external solution can be written as 
 

 d𝐹, = A;	.(∆1%&')
.3

<
4,6,$&

− 𝑝	B
,
𝑑𝑉, 	+ 		 A;

.(∆1%&')
.4

	<
3,6,$&

− 𝑆-B
,
𝑑𝑇	 

 
              +𝜇9:,,𝑑𝑛9:,, + H∑ 𝜇<𝑑𝑛<< I

,
+ H∑ 𝑒𝑧<𝑛<𝑑𝜑< I

,
 (S7) 

 
where we use subscript “e” to denote the external solution.  We consider the case of constant 
temperature, and note that dV=-dVo, dni=-dni,o, and dnsl=-dnsl,o, and dnpl=0.  Thus, the total 
Helmholtz free energy of the combined system can be written as Eq. (7).  
 

Latent Heat of Evaporation.  We consider hydrogel is at equilibrium with saturated water 
vapor outside at pressure ps.  Inside hydrogel, water is at different pressure p.  Using Eq. (23), we 
can write the water molar entropy as 
 
 𝑠=(𝑇, 𝑝) = −;.>+

.4
<
;,$&

 

 = 𝑠=∗ (𝑇, 𝑝) − 𝑅/𝑙𝑛H1 − 𝑓#,,@I + 𝑓#,,@ + 𝜒𝑓#,,@# 2 	− 	𝑅𝑇𝑓#,,@# .A
.4

 (S8) 
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where 𝑠=∗ (𝑇, 𝑝) is the entropy of pure water at pressure T and p.  The .A
.4

 term arises because 
entropy caused by molecular configuration change around the contacting region between water 
and polymer molecules is also included in Eq.(S3). In an ideal mixing model,10 this term cancels 
the cf2

2 term in the square brackets so that only mixing of entropy term is left.  The latent heat 
of evaporation is  
 
 𝐿 = ℎ=,B∗ (𝑇, 𝑝9) − ℎ=(𝑇, 𝑝) = 𝑇/𝑠=,B∗ (𝑇, 𝑝9) − 𝑠=(𝑇, 𝑝)2 

	 
 =	𝐿C + 𝑅𝑇/𝑙𝑛H1 − 𝑓#,,@I + 𝑓#,,@ + 𝜒𝑓#,,@# 2 	+ 	𝑅𝑇#𝑓#,,@# .A

.4
  (S9) 

 
where additional subscript “v” is used to represent the vapor phase, and 	𝐿C = ℎ=,B∗ (𝑇, 𝑝9) −
ℎ=∗ (𝑇, 𝑝9) is latent heat of evaporation of pure water at temperature T and ps.  In deriving the 
above expression, we took 𝑠=∗ (𝑇, 𝑝9) − 𝑠=∗ (𝑇, 𝑝) = 0 , which can be justified by the Maxwell 
relationship (𝜕𝑠∗/𝜕𝑝)4 = −(𝜕𝑣∗/𝜕𝑇); by neglecting the thermal expansion of pure water.   

 
Freezing Point Depression and Boiling Point Elevation.  First, let’s examine the melting point 
depression.  We assume pure ice is formed inside the hydrogel, whose chemical potential can be 
written as 
 
 𝑑𝜇<-, =	𝑣<-,𝑑𝑝 −	𝑠<-,𝑑𝑇 + 𝑅𝑇𝑑𝑙𝑛(𝑎<-,) = 𝑣<-,𝑑𝑝 −	𝑠<-,𝑑𝑇 (S10) 
 
From Eq.(23), the change in the chemical potential of water can be written as 
 
 d𝜇= = 𝑣=∗ 𝑑𝑝	 −	𝑠=∗ 𝑑𝑇 + 𝑅𝑇𝑑[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##] (S11) 
 
Note T in the last term on the right-hand side is outside the differentiation as the derivative is 
taken with (p,T) kept constant by definition.  At the freezing equilibrium, we have 
 
 𝑣<-,𝑑𝑝 −	𝑠<-,𝑑𝑇D+ = 𝑣=∗ 𝑑𝑝		 −	𝑠=∗ 𝑑𝑇D+ + R𝑇D+d[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##] (S12) 
 
where Tfz represents the freezing point.  For typical mixture analysis, the pressure does not 
change.  However, in hydrogels, as f2 increases from 0 (at which it is normal ice-water at the 
ambient pressure) to a finite value, the pressure inside the hydrogel increases.  If we assume that 
ice forms inside hydrogel and experience same pressure as water, we should include the pressure 
change as f2 increases. With the above argument, we get 
 
 (𝑠=∗ −	𝑠<-,)𝑑𝑇D+ = R𝑇D+d[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##] + (𝑣=∗ − 𝑣<-,)𝑑𝑝 (S13) 
  
Replacing (𝑠=∗ −	𝑠<-,) on the left hand side by 𝐿E/𝑇D+, where 𝐿E is the latent heat of melting.  
We can also approximate 𝑣=∗ ≈ 𝑣<-,  and neglect the last term.   This approximation allows 
integration of Eq. (S12), leading to Eq. (26).   
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At the boiling point, the chemical potential equals the pure vapor chemical potential.  We can 
follow similar steps as in the freezing point depression, replacing “ice” subscript in Eq. (S13) by 
“v” for vapor.  We consider the boiling happens on surface of hydrogel so that the outside vapor 
phase is at a constant pressure while the liquid phase pressure inside the hydrogel depends on 
f2.   Equation (S13) becomes 
 
−/𝑠=,BH𝑇F;, 𝑝BI − 𝑠=∗ H𝑇F;, 𝑝I2𝑑𝑇F;+𝑣=,B𝑑𝑝B = R𝑇F;d[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##] + 𝑣=∗ 𝑑𝑝 (S14) 
 
where Tbp is the boiling point. The outside vapor pressure pv does not change during 
measurement.  The first term again can be related to latent heat of evaporation (the entropy 
dependence on pressure for water is small).  Using Eq. (13) for pressure change, we can write the 
above equation into 
 
− U𝐿C/𝑅+𝐾𝑇F; ;𝑓#

"/H − D"
#
<W I4,)

4,)"
= 𝑑/𝑙𝑛H1 − 𝑓#,,@I + 𝑓#,,@ + 𝜒𝑓#,,@# 2 + 𝐾	𝑑 ;𝑓#

"/H − D"
#
< (S15) 

 
The second term inside the square bracket on the left-hand side arises from temperature 
dependence of pressure in Eq.(13), but its value is small relative to the latent heat of evaporation 
as we discussed.  We can neglect this term and arrive at Eq. (27).   

 
Salt Content Inside Hydrogel in Equilibrium with Salty Water Outside.  Adding up Eqs. (30) and 
(31) and using charge neutrality 𝑥JK% = 𝑥L:M , we get 
 
𝜇JKL: = 𝜇JKL:C + 𝑣JKL:(𝑝 − 𝑝C) + 2𝑅𝑇[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##] + 𝑅𝑇𝑙𝑛(𝛾JKL:𝑥JKL:)# (S16) 
 
where 𝛾JKL: = Z𝛾JK%𝛾L:M  is the activity coefficient of NaCl, and 𝑣JKL: = 𝑣JK%  + 𝑣L:M   is the 
molar volume of NaCl.  For water and ions outside hydrogel, we have 
 
𝜇=,, = 𝜇=C + 𝑅𝑇𝑙𝑛(𝛾=𝑥=),  (S17) 
 
𝜇JK%,, = 𝜇JK%C + 𝑅𝑇𝑙𝑛(𝛾JK%𝑥JK%),  (S18) 
 
𝜇L:M,, = 𝜇L:MC + 𝑅𝑇𝑙𝑛(𝛾L:M𝑥L:M),  (S19) 
 
𝜇JKL:,, = 𝜇JKL:C + 𝑅𝑇𝑙𝑛[(𝛾JKL:𝑥JKL:)#], (S20) 
 
From Eqs. (S16) and (S20), we get Eq. (32).  From Eq.(S17) and Eq. (23), we get Eq. (33). 
 
Also, in this case, a membrane potential might exist.  To show this possibility, we start with the 
chemical potential balance of individual ion species: 
 
𝑣JK%(𝑝 − 𝑝C) + 𝐹𝜑 + 𝑅𝑇[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓## + 𝑙𝑛(𝛾JK%𝑥JK%)]=	𝑅𝑇𝑙𝑛(𝛾JK%𝑥JK%), (S21) 
 
𝑣L:M(𝑝 − 𝑝C) − 𝐹𝜑 + 𝑅𝑇[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓## + 𝑙𝑛(𝛾L:M𝑥L:M)]=	𝑅𝑇𝑙𝑛(𝛾L:M𝑥L:M),  (S22) 
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If the activity coefficients of the ions are equal, subtracting the above two equations leads to Eq. 
(34).   
 
Solubility of Salts inside Hydrogel.  From Eq. (S16), we have the chemical potential of NaCl in the 
solution as 
 
d𝜇JKL: = 𝑑𝜇JKL:∗ (𝑝, 𝑇) + 𝑅𝑇𝑑{𝑙𝑛H𝛾𝑥JKL:,:I

#} + 2𝑅𝑇𝑑{[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##]} (S23) 
 
when salt in solution is at equilibrium with solid salt, we have  
 
𝑑𝜇JKL:,9∗ (𝑝, 𝑇) = 𝑑𝜇JKL:∗ (𝑝, 𝑇) + 𝑅𝑇𝑑{𝑙𝑛H𝛾𝑥JKL:,:I

#} + 2𝑅𝑇𝑑{[𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓##]} (S24) 
 
where 𝜇JKL:,9∗ (𝑝, 𝑇) is the chemical potential of pure solid salt.  At the melting point (Tm=801 oC 
for NaCl), pure NaCl solid and liquid are at equilibrium with xNaCl=1 and f2=0.  The chemical 
potentials of pure substance can be similarly expressed by entropy as in Eqs. (S10) and (S11), and 
an equation like Eq. (S13) can be integrated for temperature to change from Tm to T, xNaCl from 1 
to its solubility in water, and f2 from 0 to a given value.  Since the temperature range is large, the 
entropy change with temperature for both the solid and liquid phase may need to be included.  
Instead of direct integration of Eq. (S24), it is easier to use the Gibbs-Helmholtz  
 
  ;.(>&/4)

.4
<
;
= − N&

4"
 (S25) 

 
and write down the chemical potential change for pure NaCl in liquid and solid phase as 
 

 
>-./*,1
∗ (4,;)

4
− >-./*,1

∗ (4%,;)
4%

= 𝐻9(𝑇E, 𝑝) ;
"
4
− "

4%
< − ∫ U "

4" ∫ 𝑐;,9I𝑑𝑇
4
4%

W4
4%

𝑑𝑇 (S26) 
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4%
= 𝐻:(𝑇E, 𝑝) ;

"
4
− "

4%
< − ∫ U "

4" ∫ 𝑐;,:@𝑑𝑇
4
4%

W 𝑑𝑇4
4%

 (S27) 

 
The above relation leads to 
 
 𝜇9∗(𝑇, 𝑝) − 𝜇:∗(𝑇, 𝑝) = −	𝐿9: ;1 −

4
4%
< + 𝑇 ∫ U "

4" ∫ H𝑐;,: − 𝑐;,9I𝑑𝑇
4
4%

W 𝑑𝑇4
4%

 (S28) 

 
where Lm is the latent heat of the solid-liquid phase transition at Tm and p.  We will neglect the 
specific heat term, as is often done in literature.  This can be justified because the specific heat 
difference between liquid and solid NaCl is ~50 J/kg-K,65 while the latent heat is 1460 kJ/kg.  In 
this case, setting the chemical of the solid and liquid phases equaling each other, and using Eq. 
(S28), we get Eq. (36).   
 
Polyelectrolyte Hydrogel in Equilibrium with Salty Water.  Balancing the chemical potential for 
each mobile species, we arrive at  
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𝐾 U𝑓#

"/H − D"
#
W + [𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓## + 𝑙𝑛(𝛾=𝑥=)] = 𝑙𝑛(𝛾=𝑥=),  (S29) 

 
𝐾JK% U𝑓#

"/H − D"
#
W + 16

O4
+ [𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓## + 𝑙𝑛𝛾JK%𝑥JK%]=	𝑙𝑛(𝛾JK%𝑥JK%), (S30) 

 
𝐾L:M U𝑓#

"/H − D"
#
W − 16

O4
+ [𝑙𝑛(1 − 𝑓#) + 𝑓# + 𝜒𝑓## + 𝑙𝑛𝛾L:M𝑥L:M]=	𝑙𝑛(𝛾L:M𝑥L:M), (S31) 

 
with the condition 
 
 𝑥JK% + 𝑥L:M + 𝑥= = 1 (S32)  
  
Solving Eqs.(S29)-(S32) will give us the equilibrium volume fraction f2, concentrations of Na+ 
and Cl- ions and water, and the Donnan potential j.  Examples of the solution are given in Fig.9. 
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