Electronic Supplementary Information for:

A theoretical study on laser cooling feasibility of XH (X = As, Sb and Bi): Effects of intersystem crossings and spin-orbit couplings

Donghui Li,^{ab} Jianwei Cao,^a Haitao Ma^a and Wensheng Bian*^{ab}

 ^a Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
^b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

> E-mail: bian@iccas.ac.cn Phone: +86 (0)10 62566307. Fax: +86 (0)10 62563167

Figure S1	S2
Figure S2	S2
Figure S3	S2
Table S1	S3
Table S2	\$3

Fig. S1. Transition dipole moments (TDMs) as a function of the interatomic distance (R) for the $A^3\Pi_2 \rightarrow a^1\Delta_2$ transition of AsH (a), SbH (b) and BiH (c) at the icMRCI+Q level.

Fig. S2. Permanent dipole moments (PDMs) and transition dipole moments (TDMs) as a function of the interatomic distance (R) for the $X^{3}\Sigma_{1}^{-}$ and $A^{3}\Pi_{2}$ states of AsH (a) and SbH (b) at the icMRCI+Q level.

Fig. S3. Franck-Condon factors of the $A^3\Pi_2$ ($v' \le 3$) $\Rightarrow X^3\Sigma_1^-$ ($v \le 3$) transitions for AsH, calculated at the icMRCI+Q level.

	State	Population loss
AsH	<i>A</i> ³ ⊓ (v′ = 2)	0.0125
SbH	<i>A</i> ³ ⊓ (v′ = 1)	0.1073
BiH	<i>A</i> ³ ⊓ (v′ = 1)	0.6247

Table S1 The calculated population loss due to the decay channel of intersystem crossings.

The population loss due to intersystem crossings has been estimated using the Landau–Zener theory.^{1, 2} As shown in Table S1, the obtained decay probability for AsH (v' = 2) of the $A^{3}\Pi$ state is 1.3%, and those for SbH (v' = 1) and BiH (v' = 1) are 10.7% and 62.5%, respectively.

	R_{00} ^a	$ au_{v'}$ (ns) ^a	T _{Doppler} (μK) ^a	T _{Recoil} (μK)	λ_{00} (nm) a
AsH	0.9662	914	4.18	2.20	338.3
SbH	0.9248	883	4.33	1.13	373.4
BaH	0.9639 ^b	120.3 ^c	31.7 ^c	0.168 ^c	905 ^d
СН	0.983 ^e	536 ^f	7.13 ^f	7.91 ^f	430.9 ^e
SiH	0.9954 ^g	575 ^g	6.65 ^g	3.89 ^g	412.6 ^{<i>g</i>}

Table S2 Comparison of the relevant properties for laser cooling of several hydrides.

^{*a*} These columns correspond to the main cooling transition. ^{*b*} Ref. 3. ^{*c*} Ref. 4. ^{*d*} Ref. 5. ^{*e*} Ref. 6. ^{*f*} Ref. 7. ^{*g*} Ref. 8.

Notes and references

- 1 C. Zener, Proc. R. Soc. London, Ser. A, 1932, 137, 696-702.
- 2 J. N. Harvey and M. Aschi, Faraday Discuss., 2003, 124, 129-143.
- 3 I. C. Lane, Phys. Rev. A, 2015, 92, 022511.
- 4 K. Moore and I. C. Lane, J. Quant. Spectrosc. Radiat. Transfer, 2018, 211, 96-106.
- 5 Y. Gao and T. Gao, Phys. Rev. A, 2014, 90, 052506.
- 6 J. Cui, J. Xu, J. Qi, G. Dou, and Y. Zhang, Chin. Phys. B, 2018, 27, 103101.
- 7 N. Wells and I. C. Lane, Phys. Chem. Chem. Phys., 2011, 13, 19036-19051.
- 8 D. Li, M. Fu, H. Ma, W. Bian, Z. Du, and C. Chen, Front. Chem., 2020, 8, 20.