Electronic Supplementary Information for:

A theoretical study on laser cooling feasibility of XH (X = As, Sb and Bi): Effects of intersystem crossings and spin-orbit couplings

Donghui Li, ab Jianwei Cao, a Haitao Ma and Wensheng Bian *ab

E-mail: bian@iccas.ac.cn Phone: +86 (0)10 62566307. Fax: +86 (0)10 62563167

Figure S1	S2
Figure S2	S2
Figure S3	S2
Table S1	S3
Table S2	S3

^a Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Fig. S1. Transition dipole moments (TDMs) as a function of the interatomic distance (R) for the $A^3\Pi_2 \to a^1\Delta_2$ transition of AsH (a), SbH (b) and BiH (c) at the icMRCI+Q level.

Fig. S2. Permanent dipole moments (PDMs) and transition dipole moments (TDMs) as a function of the interatomic distance (R) for the $X^3\Sigma_1^-$ and $A^3\Pi_2$ states of AsH (a) and SbH (b) at the icMRCI+Q level.

Fig. S3. Franck-Condon factors of the $A^3\Pi_2$ ($v' \le 3$) $\to X^3\Sigma_1^-$ ($v \le 3$) transitions for AsH, calculated at the icMRCI+Q level.

Table S1 The calculated population loss due to the decay channel of intersystem crossings.

	State	Population loss
AsH	$A^{3}\Pi (v' = 2)$	0.0125
SbH	$A^3\Pi \ (\mathbf{v'}=1)$	0.1073
BiH	$A^3\Pi$ (v' = 1)	0.6247

The population loss due to intersystem crossings has been estimated using the Landau–Zener theory.^{1, 2} As shown in Table S1, the obtained decay probability for AsH (v' = 2) of the $A^3\Pi$ state is 1.3%, and those for SbH (v' = 1) and BiH (v' = 1) are 10.7% and 62.5%, respectively.

Table S2 Comparison of the relevant properties for laser cooling of several hydrides.

	R_{00} a	$ au_{v'}$ (ns) a	$T_{Doppler}(\mu K)^a$	T_{Recoil} (μ K)	λ_{00} (nm) a
AsH	0.9662	914	4.18	2.20	338.3
SbH	0.9248	883	4.33	1.13	373.4
ВаН	0.9639^{b}	120.3 ^c	31.7 ^c	0.168^{c}	905 ^d
СН	0.983 ^e	536 ^f	7.13 ^{<i>f</i>}	7.91^{f}	430.9 ^e
SiH	0.9954^{g}	575 ^g	6.65^{g}	3.89^{g}	412.6^{g}

 $[^]a$ These columns correspond to the main cooling transition. b Ref. 3. c Ref. 4. d Ref. 5. e Ref. 6. f Ref. 7.

Notes and references

^g Ref. 8.

- 1 C. Zener, Proc. R. Soc. London, Ser. A, 1932, 137, 696-702.
- 2 J. N. Harvey and M. Aschi, *Faraday Discuss.*, 2003, **124**, 129-143.
- 3 I. C. Lane, Phys. Rev. A, 2015, 92, 022511.
- 4 K. Moore and I. C. Lane, J. Quant. Spectrosc. Radiat. Transfer, 2018, 211, 96-106.
- 5 Y. Gao and T. Gao, *Phys. Rev. A*, 2014, **90**, 052506.
- 6 J. Cui, J. Xu, J. Qi, G. Dou, and Y. Zhang, Chin. Phys. B, 2018, 27, 103101.
- 7 N. Wells and I. C. Lane, *Phys. Chem. Chem. Phys.*, 2011, **13**, 19036-19051.
- 8 D. Li, M. Fu, H. Ma, W. Bian, Z. Du, and C. Chen, Front. Chem., 2020, 8, 20.