Supporting Information Highly Sensitive and Low-Power Consumption Metalloporphyrin-Based Junctions for CO_x Detection with Excellent Recovery

Azar Ostovan,^{*,†} Nick Papior,[‡] and S. Shahab Naghavi^{*,†}

†Department of Physical and Computational Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran

[‡]DTU Computing Center, Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

E-mail: a_ostovan@sbu.ac.ir; s_naghavi@sbu.ac.ir

Table S1: Comparison between the obtained current results at bias=+0.4 V for different ZnPor-based junctions. The structure of the simulated junctions are presented in Figure S3 of SI.

Device	Current (μA)
Au-S-ZnP-S-Au	0.49
Au-S-ZndpP-S-Au	0.47
Au-S-ZntpP-S-Au	0.38
Experiment	0.60 –

Device	E_A	E_B	E_T
Sc	11×10^{-4}	8×10^{-4}	0.00
Ti	0.78	0.00	0.78
V	1.28	0.00	1.22
Cr	1.69	0.00	1.69
Mn	2.05	0.00	2.05
Fe	0.02	2.29	0.00
Co	8×10^{-3}	0.09	0.00
Ni	0.003	0.00	0.003
Cu	0.005	0.01	0.00
Zn	0.002	0.05	0.00

Table S2: Calculated relative adsorption energy (E_{ads}, eV) of various configurations of CO binding over studied *M*Pors. The considered configurations are shown in Figure S2.

Device	E_{ads}	d	CT
Sc	-1.27	2.33	-0.32
Ti	-1.88	2.07	-0.86
V	-1.49	2.00	-0.39
Cr	-0.11	2.63	-0.07
Mn	-0.40	2.39	-0.12
Fe	-1.23	1.74	-0.41
Co	-1.01	1.86	-0.19
Ni	-0.08	2.20	-0.02
Cu	-0.20	1.85	-0.11
Zn	-0.38	1.37	-0.13

Table S3: Calculated adsorption energy $(E_{ads}, \text{ eV})$, bond length (d, Å), and difference in Hirshfeld charge (CT) of central ion-magnet after CO adsorption.

Device	τ
Sc	$2.00 \times 10^{+9}$
Ti	$1.1 \times 10^{+21}$
V	$11.46 \times 10^{+13}$
Cr	16.67×10^{-12}
Mn	1.2×10^{-6}
Fe	6.45×10^{7}
Co	$13.50{ imes}10^1$
Ni	4.25×10^{-12}
Cu	5.53×10^{-9}
Zn	0.6×10^{-6}

Table S4: Calculated recovery time (τ, s) of CO gas from *M*Por based devices.

Device	E_{CB}	E_{OB}	E_T
Sc	0.04	0.02	0.00
Ti	0.04	0.00	0.78
V	1.28	0.00	0.89
Cr	1.69	0.00	1.69
Mn	2.05	0.00	2.05
Fe	0.00	2.29	0.10
Co	8×10^{-3}	0.00	0.09
Ni	0.003	0.00	0.003
Cu	0.005	0.01	0.00
Zn	0.002	0.00	0.05

Table S5: Calculated relative stabilization energy (eV) of various configurations of CO_2 adsorption on studied *M*Pors. The considered configurations are shown in Figure S12.

Device	E_{ads}	d	q
Sc	-0.51	2.10	0.098
Ti	-0.72	1.94	0.420
V	-0.39	2.71	0.088
Cr	-0.08	3.03	0.014
Mn	-0.38	2.00	0.072
Fe	-0.43	2.08	0.096
Co	-0.68	2.00	0.114
Ni	-0.06	3.31	0.012
Cu	-0.11	3.00	0.014
Zn	-0.35	2.47	0.034

Table S6: Calculated adsorption energy (E_{ads}, eV) , bond length (d, Å), and difference in Hirshfeld charge (q) of central ion-magnet after CO₂ adsorption.

Device	au
Sc	1×10^{-8}
Ti	13
V	0.52×10^{-9}
Cr	22×10^{-16}
Mn	0.17×10^{-8}
Fe	0.29×10^{-9}
Co	0.05×10^{-3}
Ni	10×10^{-16}
Cu	70×10^{-16}
Zn	0.75×10^{-10}

Table S7: Calculated recovery time (τ, s) of CO₂ gas from *M*Por based devices.

(b) top view of Au electrode

Figure S1: (a) Side and (b) Top view Au electrodes used for setting up of the molecular sensors in this study.

Figure S2: The structure of Au-S-FeP-S-Au system with (a) 5 Au layer and (b) 7 Au layer in extended scattering region to screen the suitable number of Au layer should be included in extended central region to avoid lateral molecule interaction and direct electrode-electrode transmission. (c) The spin-polarized transmission coefficients of junctions are shown in Figure (a) and (b). The transmission coefficients for major and minor-spins do not change by extending the central region from 5 to 7 Au layers (sum of left and right layers).

Figure S3: The structure of (a) Au–S–ZnP–S–Au, (b) Au–S–ZndpP–S–Au, and (c) Au–S–ZntpP–S–Au junctions are used to compare the conductance properties of *M*Pors with different side groups.

Figure S4: Different CO adsorption configurations: (a) The CO gas is located along the two pyrrole rings: A-configuration. (b) The CO gas is placed between the two pyrrole rings: B-configuration. (c) The CO gas is placed on the top of the central ion-magnet: C-configuration. In all three configurations the CO gas is coordinated through the carbon atom.

Figure S5: Calculated spin-resolved I - V curves of the pristine Au-MPor-Au and Au-CO@MPor-Au devices. The light pink and light blue colors represent the obtained I_{\uparrow} and I_{\downarrow} for Au-MPor-Au devices. The I_{\uparrow} and I_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the I_{\downarrow} of devices before and after CO adsorption. For simplicity, each plot is labeled by the device centered molecule

Figure S6: Spin-resolved transmission functions of Au–ScPor–Au and Au–CO@ScPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S7: Spin-resolved transmission functions of Au–VPor–Au and Au–CO@VPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S8: Spin-resolved transmission functions of Au-MnPor-Au and Au-CO@MnPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S9: Spin-resolved transmission functions of Au–FePor–Au and Au–CO@FePor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S10: Spin-resolved transmission functions of Au-CoPor-Au and Au-CO@CoPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S11: Spin-resolved transmission functions of Au-NiPor-Au and Au-CO@NiPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S12: Spin-resolved transmission functions of Au-CuPor-Au and Au-CO@CuPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S13: Spin-resolved transmission functions of Au–ZnPor–Au and Au–CO@ZnPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO adsorption.

Figure S14: Different CO_2 adsorption configuration (a) The CO_2 gas is located along the two pyrrole rings and is coordinated through the carbon atom: A-configuration. (b) The CO_2 gas is placed between the two pyrrole rings and is coordinated through the carbon atom: B-configuration. (c) The CO_2 gas is placed on the top of the central ion-magnet T-configuration.

Figure S15: Calculated spin-resolved I - V curves of the pristine Au-MPor-Au and Au-CO₂@MPor-Au devices. The light pink and light blue colors represent the obtained I_{\uparrow} and I_{\downarrow} for Au-MPor-Au devices. The I_{\uparrow} and I_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the I_{\downarrow} of devices before and after CO₂ adsorption. For simplicity, each plot is labeled by the device centered molecule

Figure S16: Spin-resolved transmission functions of Au–ScPor–Au and Au–CO@ScPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S17: Spin-resolved transmission functions of Au–VPor–Au and Au–CO@VPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S18: Spin-resolved transmission functions of Au-CrPor-Au and Au-CO@CrPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S19: Spin-resolved transmission functions of Au-MnPor-Au and Au-CO@MnPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S20: Spin-resolved transmission functions of Au-FePor-Au and Au-CO@FePor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S21: Spin-resolved transmission functions of Au–CoPor–Au and Au–CO@CoPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S22: Spin-resolved transmission functions of Au-CuPor-Au and Au-CO@CuPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.

Figure S23: Spin-resolved transmission functions of Au–ZnPor–Au and Au–Zn@CoPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of CO₂ adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after CO₂ adsorption.