Electronic Supplementary Information

Structure, hydrogen bond dynamics and phase transition in a model ionic liquid electrolyte.

Alexander E. Khudozhitkov^{a,d}, Peter Stange^b, Alexander G. Stepanov^a, Daniil I. Kolokolov^{a,d}*, Ralf Ludwig^{b,c,*}

- a Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia; E-mail: <u>kdi@catalysis.ru</u>
- b Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany; Tel: 49 381 498 6517; E-mail: ralf.ludwig@uni-rostock.de
- c Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock (Germany)
- d Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia

NMR of [TEA][NTf2]

N°	δ(ppm)	Signal	Integration
3	8.84	S	1
2	3.10	Q	6
1	1.17	Т	9

Figure S1. ²H NMR spectra of [TEA][NTf₂] at 143 K, 163 K and 193 K: For each temperature we show the (a) experimental, (b) simulated and (c-d) the deconvoluted spectra.

Figure S2. ²H NMR spectra of [TEA][OTf] at 143 K: (a) experimental, (b) simulated spectra.

Figure S3. ²H NMR spectra of [TEA][OMs] at 143 K: (a) experimental, (b) simulated spectra.

Figure S4 The DSC profile for $[TEA][NTf_2]$ (left) and [TEA][OTf] samples: the heating rate was 1 K·min⁻¹.

Figure S5. The DSC profile for [TEA][OMS] samples; blue line is cooling and heating with 1 K·min⁻¹, green lines corresponds to cooling and heating with 5 K·min⁻¹, red line - 10 K·min⁻¹. The curves with the same heating or cooling rate are shifted for 0.1 mW for better illustration.