Torsional Chirality and Molecular Recognition: The Homo and Heterochiral Dimers of Thenyl and Furfuryl Alcohol

ELECTRONIC SUPPLEMENTARY INFORMATION

Marcos Juanes,^a Rizalina Tama Saragi,^a Cristóbal Pérez, *^a Lourdes Enríquez,^b Martín Jaraíz,^b Alberto Lesarri, *^a

- ^a Departamento de Química Física y Química Inorgánica and I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid (Spain)
- ^b Departamento de Electrónica, Escuela de Ingeniería de Telecomunicaciones, Universidad de Valladolid, Paseo de Belén, 15, 47011 Valladolid (Spain)
- * Corrrespondence: <u>alberto.lesarri@uva.es</u>, <u>cristobal.perez@uva.es</u>

TABLE OF CONTENTS

1. Supplementary Figures

Figure S1. Predicted Gibbs energies (B3LYP-D3(BJ), kJ mol⁻¹) for the lowest-lying conformations of furfuryl alcohol (FA) and thenyl alcohol (TA), as collected in Tables S3 and S4. Molecular conformations are labeled according to the S/OC1-C α O (τ_1) and C1C α -OH (τ_2) dihedrals (G=+gauche, G'=-gauche T=anticlinal).

Figure S2. Predicted interconversion barriers (B3LYP-D3(BJ)/def2-TZVP) for the internal rotation of the alcohol group in the sidechain of furfuryl alcohol (FA, blue trace) and thenyl alcohol (TA, green trace).

Figure S3. An illustration of some furfuryl alcohol dimers with an anticlinal (A) orientation of the proton donor molecule, unobserved for the monomer. The electronic energies for these configurations are 3.6 and 9.1 kJ mol⁻¹, respectively (B3LYP-D3(BJ)).

Figure S4. The first C_i -symmetric (GG[']-G[']G) heterochiral isomer of the furfuryl alcohol dimer in the principal axes system, predicted at electronic energies of ca. 9 kJ mol⁻¹ (B3LYP-D3(BJ)).

Figure S5. An illustration of thenyl alcohol dimers with a parallel-displaced near-staked orientation of the two thenyl rings. For these isomers some of the monomers may adopt anticlinal orientations of the sidechain. The smaller electronic energies for these configurations are 1.5-3.7 kJ mol⁻¹ (B3LYP-D3(BJ)). Other stacked conformations may be possible.

Figure S6. The first C_2 -symmetric (GG²-G²G) heterochiral isomer of the thenyl alcohol dimer in the principal axes system, predicted at electronic energies of ca. 5.1 kJ mol⁻¹ (B3LYP-D3(BJ)).

Figure S7. Microwave spectrum of the furfuryl alcohol dimer in the region 2-8 GHz, following subtraction of the rotational transitions of the monomer. The upper trace expansion illustrates typical transitions from the heterochiral (G'G-GG-Lp-, blue) and homochiral (G'G-G'G-Lp-, green) isomers.

Figure S8. Microwave spectrum of the thenyl alcohol dimer in the region 2-8 GHz, following subtraction of the rotational transitions of the monomer. The upper trace expansion illustrates typical transitions from the heterochiral (G'G'-GG'-Lp+, purple) and homochiral (G'G'-G'G'-Lp+, orange) isomers.

2

Figure S9. Plot of the reduced electronic density gradient $s \left(=\frac{1}{1(3\pi^2)^{1/3}}\frac{|\nabla\rho|}{\rho^{4/3}}\right)$ versus the signed electronic density (= sign (λ_2) ρ) for the furfuryl alcohol dimer (blue) and thenyl alcohol dimer (green). Plot minima at negative horizontal coordinates suggest attractive forces in the alcohol dimers, more intense around the position of the primary O-H···O intermolecular hydrogen bond. Repulsive forces (positive horizontal coordinates) are associated to weak destabilizing forces and ring critical points.

2. Supplementary Tables

Table S1. Computational predictions for the optimized structure of furfuryl alcohol GG[′] in the principal inertial axis system (B3LYP-D3(BJ) and MP2, basis set 6-311++G(d,p)). **Table S2**. Computational predictions for the optimized structure of thenyl alcohol GG in the principal inertial axis system (B3LYP-D3(BJ) and MN15-L, basis set def2TZVP).

Table S3. Computational predictions (B3LYP-D3(BJ) and MP2, basis set def2TZVP) for the most stable conformations of furfuryl alcohol.

Table S4. Computational predictions (B3LYP-D3(BJ) and MN15-L, basis set def2TZVP) for the most stable conformations of thenyl alcohol.

Table S5. Conformational search and predicted rotational parameters for the dimer of (furfuryl alcohol)₂ using B3LYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

Table S6. Conformational search and predicted rotational parameters for the dimer of (furfuryl alcohol)₂ using B2PLYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

Table S7. Conformational search and predicted rotational parameters for the dimer (thenyl alcohol)₂ using B3LYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

Table S8. Conformational search and predicted rotational parameters for the dimer (thenyl alcohol)₂ using B2PLYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

Table S9. Observed rotational transitions of isomer 1 of the furfuryl alcohol dimer (*Freq.*) and residuals (*o.-c.*) corresponding to the fit of Table 1 (all values in MHz).

3

Table S10. Observed rotational transitions of isomer 2 of the furfuryl alcohol dimer (*Freq.*) and residuals (*o.-c.*) corresponding to the fit of Table 1 (all values in MHz).

Table S11. Observed rotational transitions of isomer 1 of the thenyl alcohol dimer (*Freq.*) and residuals (*o.-c.*) corresponding to the fit of Table 2 (all values in MHz).

Table S12. Observed rotational transitions of isomer 2 of the thenyl alcohol dimer (Freq.) and residuals (*o.-c.*) corresponding to the fit of Table 2 (all values in MHz).

Table S13. Equilibrium coordinates for the G'G-G'G-Lp- isomer of (furfuryl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Table S14. Equilibrium coordinates for the G'G-GG-Lp- isomer of (furfuryl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Table S15. Equilibrium coordinates for the G'G'-G'G'-Lp+ isomer of (thenyl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Table S16. Equilibrium coordinates for the G[']G[']-GG[']-Lp+ isomer of (thenyl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

1. Supplementary Figures

Figure S1. Predicted Gibbs energies (B3LYP-D3(BJ), kJ mol⁻¹) for the lowest-lying conformations of furfuryl alcohol (FA) and thenyl alcohol (TA), as collected in Tables S3 and S4. Molecular conformations are labeled according to the S/OC2-C α O (τ_1) and C2C α -OH (τ_2) dihedrals (G=+gauche, G'=-gauche T=anticlinal).

Figure S2. Predicted interconversion barriers (B3LYP-D3(BJ)/def2-TZVP) for the internal rotation of the alcohol group in the sidechain of furfuryl alcohol (FA, blue trace) and thenyl alcohol (TA, green trace).

Figure S3. An illustration of some furfuryl alcohol dimers with an anticlinal (A) orientation of the proton donor molecule, unobserved for the monomer. The electronic energies for these configurations are 3.6 and 9.1 kJ mol⁻¹, respectively (B3LYP-D3(BJ)).

Figure S4. The first *C_i*-symmetric (GG´-G´G) heterochiral isomer of the furfuryl alcohol dimer in the principal axes system, predicted at electronic energies of ca. 9 kJ mol⁻¹ (B3LYP-D3(BJ)).

Figure S5. An illustration of thenyl alcohol dimers with a parallel-displaced near-staked orientation of the two thenyl rings. For these isomers some of the monomers may adopt anticlinal orientations of the sidechain. The smaller electronic energies for these configurations are 1.5-3.7 kJ mol⁻¹ (B3LYP-D3(BJ)). Other stacked conformations may be possible.

Figure S6. The first C_2 -symmetric (GG'-G'G) heterochiral isomer of the thenyl alcohol dimer in the principal axes system, predicted at electronic energies of ca. 5.1 kJ mol⁻¹ (B3LYP-D3(BJ)).

Figure S7. Microwave spectrum of the furfuryl alcohol dimer in the region 2-8 GHz, following subtraction of the rotational transitions of the monomer. The upper trace expansion illustrates typical transitions from the heterochiral (G'G-GG-Lp-, blue) and homochiral (G'G-G'G-Lp-, green) isomers.

Figure S8. Microwave spectrum of the thenyl alcohol dimer in the region 2-8 GHz, following subtraction of the rotational transitions of the monomer. The upper trace expansion illustrates typical transitions from the heterochiral (G'G'-GG'-Lp+, purple) and homochiral (G'G'-G'G'-Lp+, orange) isomers.

Figure S9. Plot of the reduced electronic density gradient $s \left(=\frac{1}{1(3\pi^2)^{1/3}}\frac{|\nabla \rho|}{\rho^{4/3}}\right)$ versus the signed electronic density (= sign (λ_2) ρ) for the furfuryl alcohol dimer (blue) and thenyl alcohol dimer (green). Plot minima at negative horizontal coordinates suggest attractive forces in the alcohol dimers, more intense around the position of the primary O-H···O intermolecular hydrogen bond. Repulsive forces (positive horizontal coordinates) are associated to weak destabilizing forces and ring critical points.

2. Supplementary Tables

Table S1. Computational predictions for the optimized structure of furfuryl alcohol GG[′] in the principal inertial axis system (B3LYP-D3(BJ) and MP2, basis set 6-311++G(d,p)).

	Furfuryl Alcohol GG´ ª											
Theory ^b												
a / Å ^c b / Å c / Å												
O (1)	0.4042/0.3860 ^b	-0.9880/-0.9852	0.2307/0.2350									
C (2)	-0.1692/-0.1685	0.2597/0.2656	0.2426/0.2416									
C (3)	0.7739/0.7917	1.1955/1.2009	-0.0508/-0.0553									
C (4)	2.0066/2.0122	0.4902/0.4812	-0.2551/-0.2553									
C (5)	1.7234/1.7047	-0.8260/-0.8415	-0.0776/-0.0716									
C (6)	-1.6271/-1.6285	0.3083/0.3269	0.5234/0.5171									
O (7)	-2.4327/-2.4202	-0.1748/-0.1825	-0.5571/-0.5572									
H (3)	0.6099/0.6320	2.2590/2.2674	-0.1195/-0.1265									
H (4)	2.9687/2.9857	0.9097/0.8799	-0.5015/-0.5017									
H (5)	2.3106/2.2800	-1.7269/-1.7536	-0.1261/-0.1164									
H (6)	-1.9235/-1.9189	1.3454/1.3718	0.6793/0.6396									
H (6')	-1.8482/-1.8554	-0.2523/-0.2105	1.4407/1.44701									
H (7)	-2.1646/-2.1270	-1.0801/-1.0858	-0.7472/-0.7116									

^aJuanes et al., *Chem. - A Eur. J.* 2018, *24*, 6564–6571. ^bB3LYP-D3(BJ) / MP2 coordinates, respectively (basis set 6-311++G(d,p)). ^cPrincipal inertial axes denoted *a*, *b*, *c*.

Table S2. Computational predictions for the optimized structure of thenyl alcohol GG in the principal inertial axis system (B3LYP-D3(BJ) and MN15-L, basis set def2TZVP).

	Thenyl Alcohol GG ^a											
Theory ^b												
	a /Å ^c b /Å c /Å											
S(1)	0.4858/ 0.3974	-1.1377/-1.1157	-0.1240/-0.1298									
C(2)	-0.3426/-0.3232	0.3794/ 0.4485	-0.2276/-0.1669									
C(3)	0.5271/0.6300	1.4164/ 1.4260	-0.0273/ 0.0205									
C(4)	1.8643/ 1.9464	0.9934/ 0.8984	0.2043/0.1836									
C(5)	1.9897/ 1.9648	-0.3649/-0.4752	0.1810/ 0.1259									
C(6)	-1.8115/-1.8020	0.45611/0.6160	-0.4869/-0.3900									
O(7)	-2.5990/-2.5843	-0.1872/-0.2550	0.5131/0.4107									
H(3)	2.8797/ 2.8177	-0.9527/-1.1427	0.3355/0.2398									
H(4)	2.6902/ 2.8373	1.6661/ 1.5074	0.3839/0.3496									
H(5)	0.2153/ 0.3833	2.4517/ 2.4910	-0.0501/ 0.0393									
H(6)	-2.0768/-2.0799	-0.0434/ 0.3765	-1.4198/-1.4327									
H(6')	-2.0846/-2.0527	1.5131/ 1.6857	-0.5872/-0.2182									
H(7)	-2.3043/-2.2638	0.1310/-0.1683	1.3743/ 1.3208									

^aJuanes et al., *Phys. Chem. Chem. Phys.* 2020, *22*, 12412–12421. ^bB3LYP-D3(BJ) / MN15-L coordinates, respectively (basis set def2-TZVP). ^cPrincipal inertial axes denoted *a*, *b*, *c*.

Table S3. Computational predictions (B3LYP-D3(BJ) and MP2, basis set def2TZVP) for the most stable conformations of furfuryl alcohol.

		Theory ^c	
	GG´	GG	ΤG΄
A / MHz ^a	6978.82/6931.13	6971.77/6900.57	7331.93/7216.27
<i>B</i> / MHz	1935.13/1947.23	1919.06/1932.27	1925.40/1923.85
C / MHz	1654.91/1659.48	1656.54/1666.07	1569.06/1581.30
<i>D</i> _J / kHz	0.3756/0.3429	0.3106/0.3530	0.1699/0.2193
<i>D_{JK}</i> / kHz	4.535/3.088	1.326/1.064	1.350/6.404
<i>D</i> _κ / kHz	1.31/3.45	4.48/0.59	2.25/0.52
<i>d</i> 1 / kHz	-0.0510/-0.0294	-0.0136/-0.0067	-0.0352/-0.0314
<i>d</i> ₂ / <i>k</i> Hz	0.0073/0.0020	0.0103/0.0115	-0.0142/-0.0450
μ _a / D	1.67/1.66	1.71/1.71	1.27/1.44
$ \mu_b $ / D	0.17/0.20	1.78/1.72	0.07/0.14
$ \mu_c $ / D	0.66/0.75	0.14/0.06	0.83/0.65
∆E / kJ mol ^{-1 b}	0.00/0.00	1.33/0.96	3.63/4.89
⊿G / kJ mol⁻¹	0.00/0.00	2.17/1.33	3.94/3.76

^aRotational constants (*A*, *B*, *C*), Watson's S-reduction centrifugal distortion constants (*D_J*, *D_{JK}*, *D_K*, *d₁*, *d₂*) and electric dipole moments (μ_{α} , α = a, b, c). ^bRelative energies corrected with the zero-point energy (ZPE) and Gibbs energy (ΔG , 298K, 1 atm). ^cB3LYP-D3(BJ) / MP2 values, respectively (basis set 6-311++G(d,p)). **Table S4.** Computational predictions (B3LYP-D3(BJ) and MN15-L, basis set def2TZVP) for the most stable conformations of thenyl alcohol.

		Theory ^c	
	GG	GG'	GT
A / MHz ^a	4619.71/4699.21	4528.70/4521.34	4694.52/4766.17
<i>B</i> / MHz	1728.88/1750.34	1696.59/1700.30	1744.64/1770.48
C / MHz	1349.57/1343.48	1347.55/1352.55	1348.01/1344.52
<i>D</i> , / kHz	0.182/0.174	0.256/0.295	0.179/0.164
<i>D_{JK} /</i> kHz	5.033 /3.985	6.066/7.979	6.545/3.092
<i>D</i> κ / kHz	-2.377/-1.600	-4.694/-6.623	-3.480/-1.168
<i>d</i> 1 / kHz	-0.044/-0.065	-0.024/-0.036	0.070/-0.068
<i>d₂ / k</i> Hz	-0.016/-0.029	0.014 /0.022	0.037/-0.029
$ \mu_a $ / D	1.36/1.26	1.50/1.43	0.69/0.83
$ \mu_b $ / D	1.43/1.27	0.27/0.15	0.93/1.13
$ \mu_c $ / D	0.34/0.62	0.10/0.10	1.24/0.99
<i>∆E</i> /kJmol ^{-1 b}	0.0/0.0	2.42/3.69	6.13/5.76
∆G/kJmol⁻¹	0.0/0.0	1.91/2.64	5.63/5.85

^aRotational constants (*A*, *B*, *C*), Watson's S-reduction centrifugal distortion constants (*D_J*, *D_{JK}*, *D_K*, *d*₁, *d*₂) and electric dipole moments (μ_{α} , α = a, b, c). ^bRelative energies corrected with the zero-point energy (ZPE) and Gibbs energy (ΔG , 298K, 1 atm). ^cB3LYP-D3(BJ) / MN15-L calculations, respectively (basis set def2TZVP).

				lsor	ners	ers					
		0-H…	O-H…O _r			Ο-Η…Ο-Η…π					
	G´G-	G´G-	G´G-	G´G-	G´G´-	G´G´-	G´G´-	G´G´-			
	GG′	G´G´-	GG-	G´G-	GG´-	G´G´-	GG-	G´G-			
	Lp+	Lp+	Lp-	Lp-	Lp+	Lp+	Lp-	Lp-			
A / MHz ^a	881.29	914.57	1099.63	1056.72	1002.30	994.54	913.10	934.85			
<i>B</i> / MHz	639.35	609.60	422.05	442.06	484.53	471.72	585.51	571.46			
C / MHz	477.69	450.82	409.19	427.87	449.10	429.42	509.70	487.20			
<i>D₁</i> / kHz	0.227	0.283	0.159	0.187	0.318	0.134	0.162	0.160			
<i>D_{JK} /</i> kHz	-0.252	-0.311	-0.689	-0.659	-0.398	0.021	0.148	-0.104			
D _κ / kHz	0.165	0.199	1.758	1.429	0.493	0.003	-0.021	0.297			
<i>d</i> 1 / kHz	0.031	0.032	0.016	-0.032	-0.025	0 .002	-0.017	-0.026			
<i>d₂ / k</i> Hz	0.005	0.010	-0.001	0.000	-0.003	-0.001	-0.005	-0.002			
$ \mu_a $ / D	0.6	1.7	0.0	0.8	1.9	2.7	0.8	0.9			
$ \mu_b $ / D	2.7	2.8	0.2	2.6	3.0	3.8	2.9	2.1			
$ \mu_c $ / D	0.5	1.5	3.7	1.3	0.1	0.6	2.1	1.2			
Δ <i>E</i> / kJ mol ^{-1 b}	0.0	1.6	2.3	0.8	1.6	2.2	2.3	1.4			
∆G / kJ mol⁻¹	0.3	1.5	1.9	0.2	0.2	1.8	2.7	0.4			
ΔE_c / kJ mol ⁻¹	-45.3	-41.9	-42.7	-42.5	-42.4	-40.9	-40.4	-43.4			
$\Delta\Delta E_{c}$ / kJ mol ⁻¹	0.0	3.4	2.6	2.8	2.9	4.4	4.9	1.9			

Table S5. Conformational search and predicted rotational parameters for the dimer of (furfuryl alcohol)₂ using B3LYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

^aRotational constants (*A*, *B*, *C*), Watson's S-reduction centrifugal distortion constants (*D_i*, *D_{iK_i*, *D_K*, *d*₁, *d*₂) and electric dipole moments (μ_{α} , $\alpha = a, b, c$). ^bRelative energies corrected with the zero-point energy (ΔE), Gibbs energy (ΔG , 298K, 1 atm) and complexation energy including BSSE corrections (ΔE_{B}) relative to the monomers in the geometry of the dimer.}

				Isome	ers	rs					
		0-H…	O-H…O _r			Ο-Η…Ο-Η…π					
	G´G-	G´G-	G´G-	G´G-	G´G´-	G´G´-	G´G´-	G´G´-			
	GG	G´G´-	GG-	G´G-	GG'-	G´G´-	G´G-	GG-			
	Lр+	Lр+	Lp-	Lp-		LD+	Lp-	Lp-			
A / MHz ^a	877.91	913.35	1096.27	1055.02	991.62	991.96	918.68	940.81			
<i>B</i> / MHz	641.07	611.25	421.88	443.70	498.43	473.15	582.83	568.38			
C / MHz	477.02	451.29	409.86	427.77	459.90	429.25	508.80	487.15			
<i>D₁</i> / kHz	0.242	0.295	0.159	0.198	0.481	0.153	0.173	0.175			
<i>D_{JK}</i> / kHz	-0.284	-0.333	-0.667	-0.676	-0.687	-0.007	0.028	-0.156			
<i>D</i> _κ / kHz	0.178	0.206	1.692	1.461	0.506	0.006	0.113	0.424			
d₁ / kHz	0.030	0.036	0.018	-0.029	-0.013	0.006	-0.020	-0.027			
<i>d₂ / k</i> Hz	0.017	0.016	-0.002	0.002	-0.002	-0.002	-0.004	-0.001			
$ \mu_a $ / D	0.6	1.7	0.1	0.9	2.0	2.8	0.9	0.9			
$ \mu_b $ / D	2.7	2.8	0.3	2.6	3.0	3.8	2.9	2.1			
$ \mu_c $ / D	0.5	1.6	3.8	1.3	0.1	0.6	2.1	1.2			
∆ <i>E</i> / kJ mol ^{-1 b}	0.0	1.3	2.2	0.7	1.5	2.0	1.7	1.1			
∆G / kJ mol⁻¹	0.2	1.3	2.1	0.1	0.1	1.7	2.4	0.0			
ΔE_B / kJ mol ⁻¹	-40.8	-38.4	-39.2	-38.9	-38.8	-37.4	-37.1	-39.5			
$\Delta\Delta E_{B}$ / kJ mol ⁻¹	0.0	2.4	1.6	1.9	2.0	3.4	3.7	1.3			

Table S6. Conformational search and predicted rotational parameters for the dimer of (furfuryl alcohol)₂ using B2PLYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

^aRotational constants (*A*, *B*, *C*), Watson's S-reduction centrifugal distortion constants (*D_J*, *D_{JK}*, *D_K*, *d*₁, *d*₂) and electric dipole moments (μ_{α} , α = a, b, c). ^bRelative energies corrected with the zero-point energy (ΔE), Gibbs energy (ΔG , 298K, 1 atm) and complexation energy including BSSE corrections (ΔE_B) relative to the monomers in the geometry of the dimer.

Table S7. Conformational search and predicted rotational parameters for the dimer (thenyl alcohol)₂ using B3LYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

	Isomers											
		0-H…(Ο-H…π		Ο-Η…Ο-Η…π					Ο-Η…Ο, π…π		
	G´G´- GG´- Lp+	G´G´- G´G´- Lp+	G´G´- GG- Lp-	G´G´- G´G- Lp-	A´G- GG´- Lp+	A´G- G´G´- Lp+	A´G- GG- Lp-	A´G- G´G- Lp-	GG´- G´G´- Lp-	G´G´- G´G´- Lp-	G´G´- AG´- Lp-	GG´- AG´- Lp-
A / MHz ^a	833.26	766.50	745.10	748.39	743.78	745.52	721.32	715.90	834.04	874.89	882.52	845.23
<i>B</i> / MHz	381.90	438.54	470.30	459.67	450.41	453.47	468.02	461.37	417.26	406.41	400.75	409.30
C / MHz	347.94	386.29	408.63	403.11	394.13	394.78	400.59	397.61	356.53	350.53	355.69	357.42
D, / kHz	0.115	0.170	0.065	0.070	0.098	0.096	0.071	0.088	0.145	0.087	0.085	0.114
<i>D_{JK} /</i> kHz	-0.214	-0.458	0.055	0.102	0.076	0.139	0.094	0.222	0.211	-0.073	-0.106	-0.242
<i>D</i> _κ / kHz	0.313	0.615	-0.027	-0.048	-0.014	-0.103	-0.060	-0.072	-0.013	0.295	0.294	0.455
<i>d₁ /</i> kHz	-0.010	-0.026	-0.007	-0.011	-0.018	-0.013	-0.009	-0.018	-0.010	-0.013	-0.012	-0.020
<i>d₂ / k</i> Hz	0.000	0.000	-0.001	-0.001	0.001	-0.002	-0.003	-0.005	0.005	-0.000	0.002	0.002
μ _α / D	2.2	2.1	0.6	1.0	1.4	1.0	1.7	1.6	1.7	1.8	1.8	1.9
$ \mu_b $ / D	2.6	3.5	2.6	1.9	2.3	3.1	3.0	2.3	2.7	2.3	2.1	2.4
$ \mu_c $ / D	0.4	0.6	1.9	1.1	0.2	1.1	1.2	0.5	0.7	0.6	1.4	0.1
Δ <i>E</i> / kJ mol ^{-1 b}	1.9	1.0	0.0	0.8	4.2	4.6	2.4	4.2	6.6	1.6	4.0	8.5
∆G / kJ mol⁻¹	0.4	0.0	0.9	0.1	3.1	3.5	2.1	2.4	2.9	0.3	2.9	7.2
<i>E</i> _B / kJ mol⁻¹	-46.9	-46.5	-46.2	-47.4	-46.7	-44.3	-47.1	-47.7	-43.5	-45.4	-45.6	-44.6
$\Delta E_B / kJ mol^{-1}$	0.8	1.2	1.5	0.3	1.0	3.4	0.6	0.0	4.2	2.3	2.1	3.1

^aRotational constants (*A*, *B*, *C*), Watson's S-reduction centrifugal distortion constants (*D_i*, *D_i*, *d_i*, *d₂*) and electric dipole moments (μ_{α} , $\alpha = a$, b, c). ^bRelative energies corrected with the zero-point energy (ΔE), Gibbs energy (ΔG , 298K, 1 atm) and complexation energy including BSSE corrections (ΔE_{a}) relative to the monomers in the geometry of the dimer.

Table S8. Conformational search and predicted rotational parameters for the dimer (thenyl alcohol)₂ using B2PLYP-D3(BJ)/def2-TZVP. The isomers observed experimentally are marked in bold characters.

	Isomers											
		0-H…(Ο-Η…π		Ο-Η…Ο-Η…π					O-H…(Ο, π…π	
	G´G´- GG´- Lp+	G´G´- G´G´- Lp+	G´G´- GG- Lp-	G´G´- G´G- Lp-	A´G- GG´- Lp+	A´G- G´G´- Lp+	A´G- GG- Lp-	A´G- G´G- Lp-	GG´- G´G´- Lp-	G´G´- G´G´- Lp-	G´G´- AG´- Lp-	GG´- AG´- Lp-
A / MHz ^a	859.03	829.55	760.80	750.23	748.09	750.05	723.30	733.43	833.39	887.25	891.30	841.52
<i>B</i> / MHz	358.74	393.18	452.27	457.79	440.93	446.95	464.85	449.85	412.58	377.62	384.05	408.81
C / MHz	329.32	357.42	392.85	402.58	385.79	388.88	397.48	388.93	353.01	325.88	342.22	355.30
<i>D</i> ₂ / kHz	0.517	0.241	0.118	0.074	0.125	0.105	0.083	0.144	0.211	0.905	0.197	0.116
<i>D_{JK}</i> / kHz	-1.612	0.912	-1.298	-0.038	-0.079	-0.118	-0.143	-0.059	-0.290	-2.777	0.085	0.321
D_{κ} / kHz	1.312	-0.712	1.267	0.096	0.136	0.154	0.132	0.185	0.490	2.336	0.008	-0.123
d₁ / kHz	-0.128	-0.045	0.013	-0.011	-0.031	-0.013	-0.014	-0.048	-0.005	0.019	-0.003	-0.019
<i>d</i> ₂ / <i>k</i> Hz	-0.005	-0.003	-0.006	-0.001	-0.002	-0.002	-0.005	-0.017	0.010	-0.019	0.000	0.002
$ \mu_a $ / D	2.1	2.1	1.4	0.94	1.5	1.1	1.6	1.8	1.7	1.5	1.7	1.8
$ \mu_b $ / D	2.6	3.7	2.5	1.88	2.3	3.1	3.1	2.3	2.7	2.5	2.1	2.4
$ \mu_c $ / D	0.4	0.1	2.1	1.11	0.2	1.1	1.3	0.4	0.7	0.7	1.5	0.0
∆ <i>E</i> / kJ mol ^{-1 b}	1.6	0.4	0.1	0.0	3.8	4.3	1.9	3.6	6.4	1.8	3.7	8.2
∆G / kJ mol⁻¹	0.0	1.1	1.1	2.9	4.4	6.2	4.6	2.9	5.2	8.6	4.3	9.8
<i>E</i> [₿] / kJ mol ⁻¹	-41.8	-40.8	-41.3	-42.9	-41.3	-39.4	-42.5	-42.9	-38.5	-39.2	-40.3	-39.6
Δ <i>E</i> ^B / kJ mol ⁻¹	1.1	2.1	1.6	0.0	1.6	3.5	0.4	0.0	4.4	3.7	2.6	3.3

^aRotational constants (*A*, *B*, *C*), Watson's S-reduction centrifugal distortion constants (*D*_{*i*}, *D*_{*i*}, *d*₁, *d*₂) and electric dipole moments (μ_{α} , $\alpha = a$, b, c). ^bRelative energies corrected with the zero-point energy (ΔE), Gibbs energy (ΔG , 298K, 1 atm) and complexation energy including BSSE corrections (ΔE_{a}) relative to the monomers in the geometry of the dimer.

Table S9. Observed rotational transitions of isomer 1 of the furfuryl alcohol dimer (*Freq*.) and residuals (*o.-c.*) corresponding to the fit of Table 1 (all values in MHz).

J	K-1	<i>K</i> ₊₁	J	K-1	<i>K</i> +1	Freq.	0C.
5	2	4	5	1	5	2007.9125	0.0031
6	2	5	6	1	6	2059.2250	-0.0048
8	2	7	8	1	8	2188.4751	0.0053
9	2	8	9	1	9	2266.5127	-0.0106
2	1	2	1	0	1	2312.7877	0.0036
10	2	9	10	1	10	2353.5627	-0.0092
2	1	1	1	0	1	2363.0502	0.0018
11	2	10	11	1	11	2449.5878	-0.0041
5	1	4	4	2	3	2519.7628	0.0036
3	1	3	2	1	2	2541.0379	-0.0132
12	2	11	12	1	12	2554.5004	-0.0059
3	0	3	2	0	2	2565.0379	-0.0037
3	2	2	2	2	1	2566.4004	-0.0019
3	2	1	2	2	0	2567.7379	-0.0064
3	1	2	2	1	1	2591.3129	0.0072
13	2	12	13	1	13	2668.1754	-0.0029
4	0	4	3	1	2	2739.7505	-0.0043
14	3	11	14	2	12	2822.4880	-0.0170
4	0	4	3	1	3	2840.2755	0.0019
7	2	6	6	3	3	2843.8630	-0.0097
13	3	10	13	2	11	2884.2256	-0.0014
7	2	5	6	3	3	2885.5006	-0.0064
7	2	5	6	3	4	2885.8631	0.0036
12	3	9	12	2	10	2940.0256	0.0002
11	3	9	11	2	9	2976.2631	0.0220
11	3	8	11	2	9	2988.6256	-0.0077
10	3	8	10	2	8	3022.2382	-0.0073
10	3	7	10	2	8	3029.3632	-0.0023
9	3	7	9	2	7	3058.2382	-0.0217
6	1	6	5	2	3	3060.2257	-0.0002
9	3	6	9	2	7	3062.1132	0.0034
8	3	6	8	2	6	3085.3507	0.0172
8	3	5	8	2	6	3087.2632	-0.0011
7	3	5	7	2	5	3104.7507	0.0034
7	3	4	7	2	5	3105.6257	-0.0012
6	3	4	6	2	4	3117.8882	-0.0152
6	3	3	6	2	4	3118.2632	0.0072
5	3	3	5	2	3	3126.1882	-0.0225
5	3	2	5	2	3	3126.3382	0.0098
4	3	1	4	2	2	3131.0132	-0.0024
4	3	2	4	2	3	3136.0007	-0.0114
5	3	3	5	2	4	3137.9007	-0.0061

6	3	4	6	2	5	3141.2007	0.0085
6	3	3	6	2	5	3141.5507	0.0060
3	1	3	2	0	2	3143.2507	0.0109
7	3	5	7	2	6	3146.3757	-0.0058
7	3	4	7	2	6	3147.2632	0.0019
8	3	6	8	2	7	3154.0258	-0.0173
8	3	5	8	2	7	3155.9883	0.0142
9	3	7	9	2	8	3164.7883	0.0015
9	3	6	9	2	8	3168.6008	-0.0358
10) 3	8	10	2	9	3179.2633	0.0138
11	. 3	9	11	2	10	3198.1008	0.0197
12	2 3	10	12	2	11	3221.9383	0.0085
3	1	2	2	0	2	3243.7633	0.0048
13	3	11	13	2	12	3251.4383	0.0107
4	1	4	3	1	3	3387.6634	-0.0024
6	1	5	5	2	3	3411.6009	-0.0051
4	0	4	3	0	3	3418.4634	-0.0082
4	2	3	3	2	2	3421.5759	-0.0079
4	3	1	3	3	0	3422.5259	-0.0345
6	1	5	5	2	4	3423.3009	-0.0012
4	2	2	3	2	1	3424.9259	-0.0062
4	1	3	3	1	2	3454.6259	-0.0176
5	0	5	4	1	3	3555.6635	-0.0122
2	2	1	1	1	0	3583.4885	-0.0039
2	2	0	1	1	0	3583.8135	-0.0147
2	2	1	1	1	1	3600.2510	0.0031
2	2	0	1	1	1	3600.5885	0.0048
5	0	5	4	1	4	3723.1886	0.0164
4	1	4	3	0	3	3965.8638	-0.0001
4	1	3	3	0	3	4133.3639	0.0034
10) 3	8	9	4	5	4175.8014	0.0157
10) 3	7	9	4	6	4182.9264	-0.0352
5	1	5	4	1	4	4233.9515	0.0030
5	0	5	4	0	4	4270.5640	-0.0004
5	2	4	4	2	3	4276.5265	0.0059
5	4	1	4	4	0	4278.1015	-0.0049
5	3	3	4	3	2	4278.4515	0.0361
5	3	2	4	3	1	4278.4515	-0.0520
5	2	3	4	2	2	4283.2140	0.0232
7	1	6	6	2	4	4310.7515	-0.0229
5	1	4	4	1	3	4317.6140	0.0141
14	4	10	14	3	11	4328.7515	-0.0001
7	1	6	6	2	5	4334.0640	0.0008
11	. 4	7	11	3	8	4368.5890	-0.0221
10) 4	6	10	3	7	4375.4640	-0.0063
13	8 4	10	13	3	11	4377.5140	-0.0165
12	2 4	9	12	3	10	4379.0140	0.0070
9	4	5	9	3	6	4380.2640	0.0035

-	11	4	8	11	3	9	4380.7140	-0.0110
	10	4	7	10	3	8	4382.4516	-0.0084
	8	4	4	8	3	5	4383.5016	0.0004
	9	4	6	9	3	7	4384.0641	0.0097
	7	4	4	7	3	5	4386.4391	-0.0435
	3	2	2	2	1	1	4422.2016	-0.0044
	3	2	1	2	1	1	4423.8766	-0.0071
	3	2	2	2	1	2	4472.4641	-0.0062
	3	2	1	2	1	2	4474.1516	0.0036
	8	1	8	7	2	5	4609.1392	-0.0146
	6	0	6	5	1	5	4610.2517	-0.0013
	5	1	5	4	0	4	4781.3393	-0.0014
	5	1	4	4	0	4	5032.5020	0.0133
	11	3	9	10	4	6	5033.9020	0.0028
	6	1	6	5	1	5	5079.8395	0.0082
	6	0	6	5	0	5	5121.0270	-0.0022
	6	2	5	5	2	4	5131.1520	0.0002
	6	4	2	5	4	1	5133.9145	-0.0009
	6	3	4	5	3	3	5134.4395	0.0024
	6	3	3	5	3	2	5134.6770	0.0050
	6	2	4	5	2	3	5142.7520	0.0076
	7	0	7	6	1	5	5148.6770	0.0063
	6	1	5	5	1	4	5180.0771	0.0135
	8	1	7	7	2	5	5210.0021	-0.0230
	8	1	7	7	2	6	5251.6521	-0.0073
	4	2	3	3	1	2	5252.4771	-0.0071
	4	2	2	3	1	2	5257.5021	-0.0080
	4	2	3	3	1	3	5353.0147	0.0116
	9	1	9	8	2	6	5357.3647	-0.0175
	4	2	2	3	1	3	5358.0272	-0.0017
	10	2	9	9	3	6	5376.7897	-0.0070
	7	0	7	6	1	6	5500.0523	0.0015
	10	2	8	9	3	7	5537.6648	0.0143
	6	1	6	5	0	5	5590.6148	0.0072
	12	5	7	12	4	8	5634.1774	-0.0029
	11	5	6	11	4	7	5636.5899	0.0184
	11	5	7	11	4	8	5636.8774	0.0306
	10	5	5	10	4	6	5638.3649	0.0109
	10	5	6	10	4	7	5638.5024	0.0193
	9	5	4	9	4	5	5639.6524	0.0033
	9	5	5	9	4	6	5639.6524	-0.0522
	8	5	4	8	4	5	5640.5649	-0.0152
	7	5	2	7	4	3	5641.1774	0.0086
	6	5	1	6	4	2	5641.5524	0.0003
	5	5	1	5	4	2	5641.7649	-0.0056
	3	3	1	2	2	0	5701.1149	-0.0125
	3	3	0	2	2	1	5701.4649	-0.0024
	8	0	8	7	1	6	5922.9526	-0.0145

7	1	7	6	1	6	5925.2526	-0.0042
6	1	5	5	0	5	5941.9776	-0.0100
7	0	7	6	0	6	5969.6276	-0.0015
7	2	6	6	2	5	5985.4401	0.0227
7	5	3	6	5	2	5989.4401	-0.0043
7	3	5	6	3	4	5990.6026	-0.0041
7	3	4	6	3	3	5991.1276	-0.0063
7	2	5	6	2	4	6003.7776	0.0146
7	1	6	6	1	5	6041.9151	0.0022
5	2	4	4	1	3	6074.3652	0.0039
10	1	10	9	2	7	6085.3152	-0.0193
5	2	3	4	1	3	6086.0527	-0.0046
9	1	8	8	2	7	6175.6152	-0.0036
11	2	10	10	3	7	6211.3027	0.0142
5	2	4	4	1	4	6241.8653	0.0075
5	2	3	4	1	4	6253.5528	-0.0010
8	0	8	7	1	7	6391.0029	-0.0004
7	1	7	6	0	6	6394,8404	0.0052
11	2	9	10	3	8	6440.2529	0.0043
4	3	2	3	2	1	6555.9030	-0.0153
4	3	1	3	2	2	6557 6530	0.0275
9	0	9	8	1	7	6680 6780	0.0001
8	1	8	7	1	, 7	6770 1781	-0.0003
8	0	8	, 7	0	, 7	6816 2156	0.0062
8	2	7	7	2	6	6839 2532	-0.0046
8	5	, 4	, 7	5	3	6845 2532	0.0040
8	ر ۵	4	, 7	ر ۵	2 2	6845 8532	-0.0010
8	ר ר	6	, 7	т २	5	6846 9282	0.0005
8	с 2	5	, 7	3	4	6847 9782	0.0074
7	1	6	, 6	0	6	6862 8782	0.0069
, 8	2	6	7	2	5	6866 3532	0.0000
6	2	5	, 5	1	ر ۲	6887 9157	0.0130
13	6	8	13	5	q	6890 7907	-0.0024
12	6	7	12	5	8	6892 1782	0.0054
11	6	, 5	11	5	6	6893 2282	0.0040
10	6	5	10	5	6	6894 0032	-0.0040
٩ ٩	6	2	<u>م</u>	5	1	6894 5657	-0 0024
8	6	2	8	5	-т Л	6894 9407	-0.0024
7	6	2	7	5	ד 2	6805 1782	-0.0037
6	6	0	, 6	5	ך כ	6805 2282	0.0047
Q Q	1	7	7	1	2	6002 0157	0.0149
6	2	, л	, 5	1	1	6011 2157	0.0020
10	1	q	g	2	7	6998 8408	0.0138
12	2	11	11	2	י 2	7038 7783	0.0041
10	∠ 1	0	0	ר ר	ο Q	7105 2150	
е 10	יד ר	5	5	2 1	5	7130 0522	
6	2 ว	ر ۸	5	1 1	2	7167 2650	0.0078
0	2 1	4 0	כ ד	U T	כ ד	7105 4024	0.0101
0	Т	0	/	U	1	1133.4034	0.0103

9	0	9	8	1	8	7281.5659	0.0167
5	3	3	4	2	2	7409.4035	0.0019
5	3	2	4	2	2	7409.5410	0.0218
5	3	3	4	2	3	7414.3785	-0.0489
5	3	2	4	2	3	7414.5660	0.0209
9	0	9	8	0	8	7660.7287	0.0043
9	2	8	8	2	7	7692.6037	-0.0116
7	2	6	6	1	5	7693.2787	0.0116
9	5	4	8	5	3	7701.1287	0.0010
9	4	5	8	4	4	7702.0287	-0.0085
9	2	7	8	2	6	7730.4412	0.0087
7	2	5	6	1	5	7734.9037	0.0024
9	1	8	8	1	7	7763.2163	-0.0009
8	1	7	7	0	7	7796.2663	0.0105
4	4	0	3	3	1	7810.6288	-0.0057
9	1	9	8	0	8	7993.7539	0.0170

Table S10. Observed rotational transitions of isomer 2 of the furfuryl alcohol dimer(*Freq.*) and residuals (*o.-c.*) corresponding to the fit of Table 1 (all values in MHz).

J	K-1	<i>K</i> +1	J	K-1	<i>K</i> +1	Freq.	0C.
5	2	3	5	1	5	2176.5501	-0.0027
6	2	4	6	1	6	2225.0251	-0.0143
7	2	5	7	1	7	2284.7877	0.0057
2	1	1	1	0	1	2340.1002	0.0136
6	1	5	5	2	3	2958.7756	-0.0112
8	2	6	7	3	4	3110.2757	0.0059
3	1	2	2	0	2	3175.9383	-0.0088
5	0	5	4	1	3	3313.4884	0.0072
11	3	9	11	2	9	3345.6634	0.0139
10	3	8	10	2	8	3375.0259	-0.0660
9	3	7	9	2	7	3397.7134	0.0073
8	3	6	8	2	6	3414.4509	0.0082
7	3	5	7	2	5	3426.3009	0.0014
6	3	4	6	2	4	3434.2634	0.0000
5	3	3	5	2	3	3439.2509	-0.0101
4	3	2	4	2	2	3442.1259	0.0043
3	3	1	3	2	1	3443.5634	0.0112
3	3	0	3	2	2	3444.5634	0.0033
4	3	1	4	2	3	3445.1509	0.0001
5	3	2	5	2	4	3446.3384	-0.0036
6	3	3	6	2	5	3448.4384	-0.0080
7	3	4	7	2	6	3451.8634	0.0141
8	3	5	8	2	7	3457.0259	0.0114
9	3	6	9	2	8	3464.5010	0.0095
10	3	7	10	2	9	3474.9385	0.0168
11	3	8	11	2	10	3489.0593	0.0128
12	3	9	12	2	11	3507.7135	-0.0015
13	3	10	13	2	12	3531.8760	-0.0148
14	3	11	14	2	13	3562.6510	-0.0061
2	2	0	1	1	0	3690.8636	-0.0151
2	2	1	1	1	1	3704.2636	-0.0128
7	1	6	6	2	4	3812.8512	0.0126
9	2	8	8	3	6	3878.3387	-0.0067
9	2	7	8	3	5	3942.5388	-0.0196
4	1	3	3	0	3	4018.9270	0.0057
6	0	6	5	1	4	4088.6895	-0.0147
8	1	8	7	2	6	4204.9896	0.0089
3	2	1	2	1	1	4493.4897	0.0101
3	2	2	2	1	2	4533.2647	-0.0064
8	1	7	7	2	5	4668.6898	0.0011
10	4	7	10	3	7	4814.7649	0.0001
9	4	6	9	3	6	4817.4024	0.0086
10	4	6	10	3	8	4817.9899	0.0041

-	8	4	5	8	3	5	4819.1649	-0.0165
	8	4	4	8	3	6	4820.0399	-0.0066
	7	4	4	7	3	4	4820.3524	0.0014
	7	4	3	7	3	5	4820.7399	-0.0038
	6	4	3	6	3	3	4821.0649	-0.0132
	6	4	2	6	3	4	4821.2524	0.0174
	5	4	2	5	3	2	4821.5149	0.0158
	5	4	1	5	3	3	4821.5649	0.0135
	4	4	0	4	3	2	4821.7149	-0.0160
	7	0	7	6	1	5	4853.7252	0.0024
	5	1	4	4	0	4	4869.3834	-0.0142
	9	1	9	8	2	7	4956.0149	-0.0036
	4	2	2	3	1	2	5290.4401	-0.0074
	4	2	3	3	1	3	5369.0151	-0.0119
	9	1	8	8	2	6	5524.8027	0.0028
	8	0	8	7	1	6	5607.5777	0.0011
	6	1	5	5	0	5	5727.9153	0.0140
	3	3	0	2	2	0	5890.5404	-0.0003
	3	3	1	2	2	1	5890.7404	0.0002
	5	2	3	4	1	3	6082.6030	0.0074
	12	5	8	12	4	8	6194.9280	-0.0154
	12	5	7	12	4	9	6195.1405	0.0120
	10	5	6	10	4	6	6197.3030	-0.0206
	10	5	5	10	4	7	6197.4155	0.0488
	9	5	4	9	4	6	6198.0780	-0.0004
	8	5	3	8	4	5	6198.5780	-0.0020
	7	5	2	7	4	4	6198.9030	-0.0110
	6	5	1	6	4	3	6199.1030	-0.0160
	5	5	1	5	4	1	6199.2280	-0.0016
	5	2	4	4	1	4	6211.5530	-0.0017
	9	0	9	8	1	7	6349.2906	0.0107
	10	1	9	9	2	7	6379.4906	0.0016
	7	1	6	6	0	6	6595.0782	0.0001
	4	3	1	3	2	1	6705.5533	0.0074
	4	3	2	3	2	2	6706.5408	0.0019
	6	2	4	5	1	4	6870.9534	0.0096
	6	2	5	5	1	5	7060.8909	0.0145
	10	0	10	9	1	8	7077.8763	-0.0060
	11	1	10	10	2	8	7230.9785	0.0052
	8	1	7	7	0	7	7471.6640	-0.0076
	5	3	2	4	2	2	7519.8037	0.0074
	5	3	3	4	2	3	7522.7537	-0.0066
	7	2	5	6	1	5	7656.7037	-0.0020
	7	2	6	6	1	6	7917.0164	-0.0061

Table S11. Observed rotational transitions of isomer 1 of the thenyl alcohol dimer (*Freq.*)and residuals (*o.-c.*) corresponding to the fit of Table 2 (all values in MHz).

J	K-1	<i>K</i> ₊₁	J	<i>K</i> -1	<i>K</i> ₊₁	Freq.	0C.
3	1	3	2	1	2	2139.3750	0.0085
3	0	3	2	0	2	2184.6250	-0.0099
3	2	2	2	2	1	2192.4125	0.0096
3	2	1	2	2	0	2200.1625	-0.0050
6	3	3	6	2	4	2205.1250	-0.0100
3	1	2	2	1	1	2242.9750	-0.0164
5	3	2	5	2	3	2245.9500	0.0095
4	3	1	4	2	2	2271.4000	-0.0093
4	3	2	4	2	3	2299.7875	-0.0040
8	3	6	8	2	7	2394.2375	-0.0103
4	0	4	3	1	3	2540.5125	-0.0117
3	1	3	2	0	2	2548.1375	-0.0108
2	2	1	1	1	0	2820.3500	-0.0020
4	1	4	3	1	3	2850.3625	0.0063
2	2	0	1	1	1	2856.8625	-0.0060
4	0	4	3	0	3	2904.0250	-0.0125
4	2	3	3	2	2	2921.6750	0.0021
4	3	1	3	3	0	2927.3000	-0.0141
4	2	2	3	2	1	2940.8375	0.0166
4	1	3	3	1	2	2988.2000	0.0000
10	4	6	10	3	7	3098.5875	0.0069
7	4	3	7	3	4	3187.0125	0.0089
5	4	2	5	3	3	3205.6750	0.0030
4	1	4	3	0	3	3213.8750	0.0055
5	0	5	4	1	4	3306.8625	0.0067
3	2	2	2	1	1	3516.5875	0.0021
5	1	5	4	1	4	3559.7250	0.0113
5	0	5	4	0	4	3616.7000	0.0123
3	2	1	2	1	2	3630.0000	0.0035
5	2	4	4	2	3	3649.6250	-0.0103
5	3	3	4	3	2	3659.9875	-0.0010
5	3	2	4	3	1	3661.4250	-0.0029
5	2	3	4	2	2	3686.9000	0.0031
5	1	4	4	1	3	3731.1000	0.0068
5	1	5	4	0	4	3869.5500	0.0044
6	0	6	5	1	5	4069.5250	0.0056
7	1	6	6	2	5	4175.6500	-0.0091
4	2	3	3	1	2	4195.2625	-0.0043
6	1	6	5	1	5	4267.2625	0.0039
6	0	6	5	0	5	4322.3750	-0.0022
6	2	5	5	2	4	4375.9750	-0.0001
c	З	4	5	3	3	4393.6375	-0.0051

-	6	3	3	5	3	2	4397.4500	-0.0002
	4	2	2	3	1	3	4431.4375	-0.0133
	6	2	4	5	2	3	4438.2500	-0.0057
	6	1	5	5	1	4	4470.8250	-0.0045
	3	3	1	2	2	0	4485.0250	0.0103
	3	3	0	2	2	1	4487.0250	-0.0101
	6	1	6	5	0	5	4520.1250	0.0086
	7	0	7	6	1	6	4824.3375	0.0139
	5	2	4	4	1	3	4856.7000	-0.0020
	7	1	7	6	1	6	4972.9375	0.0061
	7	0	7	6	0	6	5022.0625	-0.0002
	7	2	6	6	2	5	5100.3875	-0.0063
	7	5	2	6	5	1	5122.4750	0.0121
	7	4	4	6	4	3	5125.1250	-0.0054
	7	4	3	6	4	2	5125.3625	-0.0088
	7	3	5	6	3	4	5127.6625	-0.0108
	7	3	4	6	3	3	5136.1250	-0.0006
	7	1	7	6	0	6	5170.6750	0.0045
	7	2	5	6	2	4	5193.5625	-0.0077
	7	1	6	6	1	5	5206.4250	0.0112
	4	3	2	3	2	1	5211.7500	0.0018
	4	3	1	3	2	2	5221.9500	0.0035
	5	2	3	4	1	4	5268.0000	0.0084
	6	2	5	5	1	4	5501.6000	0.0159
	10	2	8	9	3	7	5527.2250	0.0133
	8	0	8	7	1	7	5568.9500	0.0017
	8	1	8	7	1	7	5676.8000	0.0130
	8	0	8	7	0	7	5717.5625	0.0064
	8	2	7	7	2	6	5822.6125	-0.0084
	8	1	8	7	0	7	5825.4000	0.0053
	9	1	8	8	2	7	5849.9750	0.0095
	8	6	2	7	6	1	5853.6625	0.0056
	8	5	3	7	5	2	5855.8250	-0.0035
	8	4	5	7	4	4	5859.6875	0.0058
	8	4	4	7	4	3	5860.3250	-0.0148
	8	3	6	7	3	5	5861.7750	-0.0021
	8	3	5	7	3	4	5878.3250	-0.0005
	5	3	3	4	2	2	5930.9125	-0.0033
	8	1	7	7	1	6	5936.7125	-0.0081
	8	2	6	7	2	5	5950.6250	0.0068
	5	3	2	4	2	3	5961.7000	-0.0016
	7	2	6	6	1	5	6131.1375	-0.0109
	4	4	1	3	3	0	6134.1750	0.0038
	6	2	4	5	1	5	6146.5375	0.0038
	9	0	9	8	1	8	6303.0125	0.0204
	9	1	9	8	1	8	6378.9750	0.0019
	9	0	9	8	0	8	6410.8250	-0.0056
	9	1	9	8	0	8	6486.8125	0.0008

	9	2	8	8	2	7	6542.3625	-0.0652
	9	7	3	8	7	1	6584.9000	-0.0147
	9	7	3	8	7	2	6584.9125	-0.0022
	9	6	3	8	6	2	6586.7250	0.0006
	9	5	5	8	5	4	6589.8250	0.0225
	9	5	4	8	5	3	6589.8250	-0.0154
	9	4	6	8	4	5	6595.0500	0.0022
	9	3	7	8	3	6	6595.5625	0.0036
	9	4	5	8	4	4	6596.6125	-0.0005
	9	3	6	8	3	5	6624.9375	-0.0034
	6	3	4	5	2	3	6637.6625	0.0009
	9	1	8	8	1	7	6660.6000	-0.0004
	10	1	9	9	2	8	6684.6250	-0.0142
	9	2	7	8	2	6	6706.9500	-0.0040
	6	3	3	5	2	4	6709.5125	-0.0040
	8	2	7	7	1	6	6747.3625	0.0068
	5	4	2	4	3	1	6865.1750	-0.0034
	5	4	1	4	3	2	6865.6500	-0.0286
	10	0	10	9	1	9	7027.4375	-0.0018
	7	2	5	6	1	6	7072.8625	0.0172
	10	1	10	9	1	9	7079.7000	-0.0001
	10	0	10	9	0	9	7103.4250	0.0046
	10	1	10	9	0	9	7155.6625	-0.0186
	10	2	9	9	2	8	7259.6500	0.0061
	10	8	3	9	8	2	7316.2125	0.0094
	10	7	4	9	7	3	7317.7750	-0.0058
	10	6	4	9	6	3	7320.2750	0.0001
	10	3	8	9	3	7	7328.5625	-0.0015
	10	4	7	9	4	6	7331.2000	0.0025
	10	4	6	9	4	5	7334.5500	0.0042
	9	2	8	8	1	7	7353.0625	-0.0002
	10	3	7	9	3	6	7376.6625	0.0072
	10	1	9	9	1	8	7377 1000	-0.0015
	10	2	8	9	2	7	7460.4875	0.0031
	7	2	4	6	2	, 5	7469 6750	0.0079
	, 11	1	10	10	2	9	7510 7875	-0 0089
	6	1	3	5	2	2	7595 1000	-0 0174
	6	- л	2	5	2	2	7597 1375	0.0174
	11	- О	11	10	1	10	77/13 9750	0.0070
	11	1	11	10	1	10	7770 2125	0.0130
	5	5	0	10	1	1	7782 3375	0.0038
	11	0	11	10	- -	10	7706 2125	-0.0035
	11	1	11	10	0	10	7831 /625	
	11	ר ז	10	10	0 D	0	707/ 1675	-0.0009
	0 TT	2 2	۲0 10	10 7	2 ว	J E	7005 2125	-0.0000
	0 11	с С	0	/ 10	2 2	о С	2060 2125	0.0204
	11 11	5 ∧	9 7	10	5 ∧	ō C	0000.3125	-0.0032
	11	4	/	10	4	ь -	80/4.0125	0.0070
_	11	3	8	10	3	/	8133.6125	0.0056

Table S12. Observed rotational transitions of isomer 2 of the thenyl alcohol dimer (Freq.)and residuals (*o.-c.*) corresponding to the fit of Table 2 (all values in MHz).

J	K-1	<i>K</i> ₊₁	J	K-1	<i>K</i> +1	Freq.	0-C
10	1	9	10	0	10	2060.8000	-0.0046
8	2	7	8	1	8	2071.0500	0.0075
6	3	3	6	2	4	2075.5625	0.0106
5	3	2	5	2	3	2129.0750	-0.0007
3	1	3	2	1	2	2185.6875	-0.0064
4	3	2	4	2	3	2203.0750	-0.0010
5	3	3	5	2	4	2217.4375	-0.0024
3	0	3	2	0	2	2236.6000	0.0000
6	3	4	6	2	5	2241.7500	-0.0131
3	2	2	2	2	1	2247.4875	-0.0083
3	2	1	2	2	0	2258.3750	-0.0071
9	2	8	9	1	9	2259.6375	-0.0051
6	2	5	5	3	2	2261.8750	-0.0009
7	3	5	7	2	6	2278.9875	0.0027
3	1	2	2	1	1	2305.8250	-0.0222
8	3	6	8	2	7	2331.8750	0.0017
11	1	10	11	0	11	2375.5125	0.0125
9	3	7	9	2	8	2402.8250	-0.0105
6	2	4	5	3	3	2441.0750	0.0091
10	2	9	10	1	10	2465.8250	0.0122
14	4	10	14	3	11	2473.8250	-0.0101
10	3	8	10	2	9	2493.7625	-0.0008
3	1	3	2	0	2	2567.1375	0.0099
13	4	9	13	3	10	2597.5750	0.0038
11	3	9	11	2	10	2605.9125	-0.0050
6	1	6	5	2	3	2637.5125	-0.0073
4	0	4	3	1	3	2639.4250	0.0081
11	2	10	11	1	11	2687.3500	0.0049
5	1	4	4	2	3	2711.1500	-0.0222
12	4	8	12	3	9	2716.5875	0.0092
12	3	10	12	2	11	2739.8500	-0.0056
2	2	1	1	1	0	2794.7625	0.0002
11	4	7	11	3	8	2820.8000	0.0040
2	2	0	1	1	1	2837.6125	0.0163
13	3	11	13	2	12	2895.4125	0.0069
10	4	6	10	3	7	2904.5375	0.0112
4	1	4	3	1	3	2911.3000	-0.0042
12	2	11	12	1	12	2921.8500	0.0147
8	3	6	7	4	3	2952.5250	0.0065
9	4	5	9	3	6	2966.5750	-0.0008
4	0	4	3	0	3	2969,9250	-0.0195
7	2	6	6	3	3	2971 3125	-0.0248
'	2	U	0	5	5	2371.3123	0.0240

4	2	3	3	2	2	2994.5000	-0.0067
13	1	12	13	0	13	3001.4875	0.0237
4	3	2	3	3	1	3001.7875	-0.0204
4	3	1	3	3	0	3002.5125	0.0011
8	3	5	7	4	4	3004.6375	-0.0064
8	4	4	8	3	5	3009.2125	0.0057
4	2	2	3	2	1	3021.1750	-0.0124
7	4	3	7	3	4	3036.4875	0.0155
6	4	2	6	3	3	3052.7125	-0.0088
8	4	5	8	3	6	3058.6125	-0.0023
7	4	4	7	3	5	3059.7000	-0.0104
9	4	6	9	3	7	3060.8500	0.0013
6	4	3	6	3	4	3062.2375	-0.0082
10	4	7	10	3	8	3068.8250	-0.0161
4	1	3	3	1	2	3070.9750	0.0161
14	3	12	14	2	13	3071.7000	0.0091
11	4	8	11	3	9	3085.4125	-0.0049
12	4	9	12	3	10	3113,5875	-0.0095
7	1	7	6	2	4	3145.0250	-0.0097
13	4	10	13	3	11	3156.3625	-0.0027
14	4	11	14	3	12	3216.4500	0.0024
4	1	4	3	0	3	3241.8250	-0.0068
15	3	13	15	2	14	3267 2125	0.0008
7	2	5	6	3	4	3280 3250	-0.0055
15	4	12	15	3	13	3296 1125	0.0001
14	1	13	14	0	14	3305 1250	-0.0037
16	4	13	16	3	14	3397 0125	-0.0031
14	2	13	14	1	14	3420,1500	-0.0022
5	0	5	4	1	4	3422,5125	-0.0019
3	2	2	2	1	1	3503 8375	0.0026
6	1	5	5	2	4	3561 3000	-0.0066
5	1	5	4	1	4	3634 7000	-0.0110
2	2	1	2	1	2	3637 7375	0.00110
5	0	5	2 4	0	2 4	3694 3875	-0 0142
5	2	<u>л</u>	1	2	2	3739 6875	0.0142
5	7	ד 2	-т Л	7	1	3751 0375	0.0007
5	4	1	4	-т Л	0	2751 0275	-0.0242
5	4	3	4 1	4	2	3754 0500	0.0051
5	2	כ ר	4 1	2	2 1	2756 4750	-0.0054
5	כ ר	2	4 1	ר ר	1 2	2701 0000	0.0133
ر 12	2	5 0	4 12	2 1	2	2002 0625	-0.0021
12	ר כ	0 6	0	4 1	5	2005.9023	-0.0001
9	2 1	0	0 1	4	כ כ	2002.0122	0.0045
12	L L	4	4 1 0	1	о 0	2050.7000	-0.0077
1	5	/	1C	4 л	0 1 7	2001 1625	
15 11	С Г	11 10	17 14	4 1	11	2001.1022	0.0035
14	с 5	10	14 11	4	11 -	2002 0125	
11	5	6	11	4	/	3883.0125	0.0156
13	5	9	13	4	10	3888.0625	0.0031

16	5	12	16	4	13	3888.5500	0.0051
12	5	8	12	4	9	3897.1250	-0.0006
10	5	5	10	4	6	3905.3375	0.0062
5	1	5	4	0	4	3906.5875	-0.0108
11	5	7	11	4	8	3907.2125	-0.0063
10	5	6	10	4	7	3916.9625	-0.0046
9	5	4	9	4	5	3920.4125	-0.0004
9	5	5	9	4	6	3925.5000	-0.0133
8	5	3	8	4	4	3930.4375	-0.0056
6	5	2	6	4	3	3941.3000	-0.0207
5	5	0	5	4	1	3943.6250	-0.0210
8	2	6	7	3	5	4145.7625	-0.0109
4	2	3	3	1	2	4192.5000	0.0056
6	0	6	5	1	5	4198.2250	-0.0005
9	2	8	8	3	5	4310.6500	0.0112
6	1	6	5	1	5	4355.7375	0.0005
11	4	8	10	5	5	4362.8500	-0.0020
11	4	7	10	5	6	4388.5125	-0.0043
6	0	6	5	0	5	4410.4125	-0.0096
7	1	6	6	2	5	4419.5000	0.0022
3	3	1	2	2	0	4440.5250	-0.0030
3	3	0	2	2	1	4443.4000	0.0116
10	3	8	9	4	5	4449.2750	-0.0207
4	2	2	3	1	3	4473.2250	-0.0051
6	2	5	5	2	4	4482.6000	0.0171
6	5	1	5	5	0	4501.8500	-0.0065
6	4	3	5	4	2	4504.2125	-0.0055
6	4	2	5	4	1	4504.3875	0.0198
6	3	4	5	3	3	4506.9125	0.0064
6	3	3	5	3	2	4513.3500	-0.0007
6	2	4	5	2	3	4566.8625	-0.0121
6	1	6	5	0	5	4567.9375	0.0039
6	1	5	5	1	4	4589.8125	-0.0025
10	3	7	9	4	6	4630.8750	-0.0008
15	6	9	15	5	10	4723.3625	0.0064
15	6	10	15	5	11	4744.7625	-0.0076
14	6	8	14	5	9	4750.2375	0.0074
14	6	9	14	5	10	4761.2875	0.0065
13	6	7	13	5	8	4770.3250	-0.0063
13	6	8	13	5	9	4775.7000	-0.0038
12	6	7	12	5	8	4787.7375	-0.0840
9	6	4	9	5	5	4811.1750	-0.0337
8	6	2	8	5	3	4815.4750	0.0299
8	6	3	8	5	4	4815.4750	-0.0078
7	6	2	7	5	3	4818.4375	-0.0408
6	6	1	6	5	2	4820.4375	-0.0350
5	2	4	4	1	3	4861.2125	-0.0036
10	2	9	9	3	6	4922.1000	-0.0082

•	7	0	7	6	1	6	4962.5750	-0.0054
	9	2	7	8	3	6	5034.5375	-0.0169
	7	1	7	6	1	6	5074.4000	0.0104
	7	0	7	6	0	6	5120.0875	-0.0043
	12	4	8	11	5	7	5179.2750	0.0136
	11	3	9	10	4	6	5182.7625	-0.0033
	4	3	2	3	2	1	5183.9500	-0.0038
	4	3	1	3	2	2	5198.4125	0.0086
	7	2	6	6	2	5	5222.8000	-0.0121
	7	1	7	6	0	6	5231.9125	0.0115
	7	6	2	6	6	1	5251.8375	-0.0075
	7	5	2	6	5	1	5253.8375	-0.0090
	7	4	4	6	4	3	5257.5125	0.0139
	7	4	3	6	4	2	5257,9875	-0.0069
	7	ג	5	6	ג	4	5260 0375	0.0036
	, 7	3	4	6	3	2	5274 2500	0.0062
	, 8	1	7	7	2	6	5280 6500	0.0002
	7	1	, 6	, 6	1	5	5340 7750	0.0041
	, 7	1 2	5	6	2	1	5346 1750	0.0010
	, 5	2	2	1	1	-т Л	5252 0275	0.0042
	ر 11	2	5 10	4	т 2	4	5552.5575	0.0094
	11	2	010	10	כ ⊿	7		0.0004
	11	3 7	о г	10	4	/	5484.0025	-0.0254
	0 10	2	5	5	T	4	5511.1000	
	13	/	/	13	6	ð	56/1.0/50	-0.05/1
	12	/	5	12	6	6	56/8./8/5	0.0218
	12	/	6	12	6	/	56/8./8/5	-0.0505
	11	/	5	11	6	6	5684.8750	0.0013
	10	/	4	10	6	5	5689.5125	0.0157
	9	7	3	9	6	4	5692.9625	0.0163
	8	7	2	8	6	3	5695.4750	0.0357
	7	7	1	7	6	1	5697.1500	-0.0207
	7	7	0	7	6	2	5697.1625	-0.0082
	8	0	8	7	1	7	5714.3875	0.0003
	8	1	8	7	1	7	5790.8500	0.0143
	8	0	8	7	0	7	5826.1875	-0.0087
	12	3	10	11	4	7	5898.4250	0.0030
	8	1	8	7	0	7	5902.6250	-0.0197
	5	3	3	4	2	2	5916.8250	0.0140
	10	2	8	9	3	7	5942.1375	-0.0125
	8	2	7	7	2	6	5960.0250	0.0013
	5	3	2	4	2	3	5960.3875	-0.0001
	12	2	11	11	3	8	5979.3625	0.0001
	13	4	9	12	5	8	5986.5875	-0.0119
	8	7	2	7	7	0	6001.8625	-0.0047
	8	7	2	7	7	1	6001.8500	-0.0172
	8	6	3	7	6	2	6003.6000	0.0012
	8	5	3	7	5	2	6006.6125	-0.0111
	8	4	5	7	4	4	6011.8125	-0.0039

8	3	6	7	3	5	6012.9125	0.0004
8	4	4	7	4	3	6013.1750	0.0074
8	3	5	7	3	4	6040.4250	-0.0077
4	4	1	3	3	0	6068.8125	0.0569
4	4	0	3	3	1	6068.8125	-0.0648
8	1	7	7	1	6	6083.9500	-0.0103
8	2	6	7	2	5	6125.4750	-0.0017
9	1	8	8	2	7	6138.5625	0.0021
7	2	6	6	1	5	6144.0875	-0.0009
6	2	4	5	1	5	6285.0875	-0.0042
12	3	9	11	4	8	6369.9000	-0.0019
13	2	12	12	3	9	6409.6750	-0.0034
9	0	9	8	1	8	6454.6375	0.0019
9	1	9	8	1	8	6505.3500	-0.0041
9	0	9	8	0	8	6531.0875	0.0034
15	8	8	15	7	9	6544.8250	-0.0110
14	8	7	14	7	8	6552,4125	0.0000
13	8	6	13	7	7	6558,5500	0.0192
12	8	5	12	7	6	6563,4125	0.0184
11	8	4	11	7	5	6567,2000	0.0108
10	8	2	10	7	3	6570,1000	0.0139
9	8	1	9	, 7	2	6572,2500	0.0111
8	8	1	8	7	1	6573 7750	-0.0110
9	1	9	8	0	8	6581 8125	0.0098
6	3	4	5	2	3	6632 7250	0.0101
9	2	8	8	2	7	6693 9625	0.0081
6	2	3	5	2	, 4	6734 0625	0.0048
9	8	2	8	8	0	6751.9000	-0.0101
9	7	3	8	7	2	6753,4750	0.0176
9	6	3	8	6	2	6755 9750	0.0230
9	5	5	8	5	4	6760 2125	-0.0120
9	5	4	8	5	י 2	6760 3000	-0.0193
8	2	7	7	1	6	6763 3500	0.0119
q	2	, 7	, 8	т २	6	6764 9250	0.00113
9	4	, 6	8	<u>ح</u>	5	6767 1625	0.0000
9	4	5	8	4	ر ۲	6770 3500	0.0004
q	ד 2	6	8	т २	- 5	6812 9750	-0.0004
9	1	8	8	1	7	6817 9500	0.0034
5	<u>л</u>	2	1	יד ג	, 1	6818 1625	0.0110
5	- л	1	- Л	2	2	6819 0125	-0.0031
11	2	۰ ۵	10	2	2	6863 0250	-0.0034
9	2	7	2	2	6	6901 6875	-0.0054
10	1	, q	q	2	8	6986 6000	0.0034
10	0	10	q	1	q	7185 4500	0.0157
10	1	10	q	1	q	7218 2750	-0 0047
10	0	10	q	0	q	7236 1500	0.0047
1/	2	17	12	⊿	a	7742 8750	0.0072
10	1	10	0	- -	٥	7269 0125	0.0143
10	Т	10	9	U	9	1203.0123	0.0142

_								
	7	2	5	6	1	6	7275.5375	0.0119
	13	3	10	12	4	9	7286.1625	0.0085
	7	3	5	6	2	4	7325.8875	0.0134
	9	2	8	8	1	7	7373.3375	0.0054
	15	4	12	14	5	9	7410.7125	0.0065
	10	2	9	9	2	8	7424.4500	0.0001
	16	9	8	16	8	9	7426.0125	-0.0012
	15	9	7	15	8	8	7432.1750	-0.0014
	14	9	6	14	8	7	7437.2250	0.0091
	13	9	4	13	8	5	7441.2875	0.0080
	12	9	3	12	8	4	7444.5125	0.0094
	11	9	3	11	8	3	7447.0125	0.0016
	10	9	2	10	8	2	7448.9125	-0.0040
	9	9	1	9	8	1	7450.3250	0.0015
	10	9	1	9	9	0	7501.9750	0.0069
	10	8	2	9	8	1	7503.3875	0.0125
	10	6	4	9	6	3	7508.9875	0.0049
	10	5	6	9	5	5	7514.8250	0.0010
	10	5	5	9	5	4	7515.0875	0.0003
	10	3	8	9	3	7	7515.3750	-0.0027
	10	4	7	9	4	6	7523.3750	0.0048
	7	3	4	6	2	5	7525.7250	0.0064
	10	4	6	9	4	5	7530.1625	-0.0063
	10	1	9	9	1	8	7541.9875	0.0072
	6	4	3	5	3	2	7565.8875	0.0026
	6	4	2	5	3	3	7569.3500	0.0109
	10	3	7	9	3	6	7592.2250	0.0065
	10	2	8	9	2	7	7672.5125	0.0001
	15	4	11	14	5	10	7672.8250	-0.0235
	5	5	1	4	4	0	7695.6000	0.0074
	5	5	0	4	4	1	7695.6000	0.0031
	12	2	10	11	3	9	7790.9500	-0.0112
	11	1	10	10	2	9	7818.7625	0.0082
	11	1	11	10	1	10	7929.9500	-0.0024
	11	0	11	10	0	10	7941.9125	-0.0100
	11	1	11	10	0	10	7962.8250	0.0170
	10	2	9	9	1	8	7979.8500	0.0061
	8	3	6	7	2	5	7992.6250	0.0096
	11	2	10	10	2	9	8151.4875	0.0027

Table S13. Equilibrium coordinates for the G'G-G'G-Lp- isomer of (furfuryl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Atom	a / Ū	b / Å	c / Å
С	-2.6368	0.3518	1.4297
С	-3.6168	0.7950	0.6062
С	-3.1061	0.6721	-0.7254
С	-1.8492	0.1664	-0.6269
0	-1.5466	-0.0319	0.7007
Н	-2.5510	0.2476	2.4960
Н	-4.5830	1.1610	0.9070
Н	-3.6103	0.9223	-1.6429
С	-0.8069	-0.1951	-1.6262
Н	-1.1414	0.1692	-2.5969
Н	0.1299	0.3171	-1.3843
0	-0.5987	-1.5917	-1.7604
Н	-0.1278	-1.8968	-0.9671
С	2.0113	1.9400	0.1673
С	2.7688	1.5093	-0.8742
С	2.8996	0.0950	-0.7122
С	2.2157	-0.2338	0.4171
0	1.6679	0.8943	0.9680
Н	1.6492	2.9051	0.4720
Н	3.1824	2.1205	-1.6574
Н	3.4212	-0.5919	-1.3564
С	1.9057	-1.5146	1.0955
Н	2.5761	-2.2858	0.7226
Н	2.0607	-1.4154	2.1735
0	0.5785	-1.9826	0.8357
Н	-0.0526	-1.3116	1.1368

Table S14. Equilibrium coordinates for the G'G-GG-Lp- isomer of (furfuryl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Atom	a / Ū	b / Å	c / Å
С	-2.8312	-0.8957	1.0822
С	-3.7706	0.0582	0.8784
С	-3.1597	1.0512	0.0477
С	-1.8885	0.6414	-0.1981
0	-1.6712	-0.5588	0.4410
Н	-2.8178	-1.8237	1.6242
Н	-4.7739	0.0554	1.2675
Н	-3.6094	1.9546	-0.3268
С	-0.7626	1.2060	-0.9916
Н	-1.0364	2.2226	-1.2723
Н	0.1335	1.2640	-0.3664
0	-0.5006	0.5039	-2.1956
Н	-0.0338	-0.3167	-1.9694
С	2.8519	1.4396	0.1190
С	2.5166	1.2996	1.4279
С	2.0355	-0.0384	1.5714
С	2.1128	-0.6162	0.3404
0	2.6154	0.2841	-0.5579
Н	3.2551	2.2502	-0.4606
Н	2.6037	2.0516	2.1927
Н	1.6735	-0.5103	2.4690
С	1.7170	-1.9432	-0.1905
Н	2.4647	-2.3050	-0.8946
Н	1.6569	-2.6507	0.6400
0	0.4854	-1.9140	-0.9175
Н	-0.2252	-1.6791	-0.3016

Table S15. Equilibrium coordinates for the G'G'-G'G'-Lp+ isomer of (thenyl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Atom	a / Ū	b/Å	c / Å
S	-2.3681	-0.8649	0.5053
С	-2.8955	0.5363	1.3408
С	-2.7730	1.6593	0.5676
С	-2.2396	1.3745	-0.7156
С	-1.9640	0.0438	-0.9036
С	-1.3219	-0.5973	-2.0892
Н	-1.8223	-1.5251	-2.3629
Н	-1.3931	0.0873	-2.9388
0	0.0412	-0.9630	-1.8560
Н	0.5183	-0.1745	-1.5625
Н	-2.0567	2.1205	-1.4764
Н	-3.0593	2.6452	0.9023
Н	-3.2777	0.4585	2.3453
S	3.0584	0.0698	-0.1394
С	2.7051	1.7252	-0.4328
С	1.5411	2.1069	0.1780
С	0.9302	1.0426	0.8926
С	1.6353	-0.1317	0.8206
С	1.2550	-1.4655	1.3857
Н	2.0009	-1.8181	2.0995
0	1.1535	-2.4785	0.3993
Н	0.6627	-2.1176	-0.3574
Н	0.3111	-1.3343	1.9269
Н	-0.0071	1.1284	1.4237
Н	1.1355	3.1060	0.1160
Н	3.3663	2.3228	-1.0385

Table S16. Equilibrium coordinates for the G'G'-GG'-Lp+ isomer of (thenyl alcohol)₂, according to the DFT prediction B2PLYP-D3(BJ) /def2TZVP.

Atom	<i>a</i> / Ū	b / Å	c / Å
S	-3.2250	-0.0135	0.0632
С	-2.9994	1.6610	0.3688
С	-1.8061	2.1081	-0.1307
С	-1.0677	1.0767	-0.7702
С	-1.7086	-0.1376	-0.7530
С	-1.2038	-1.4412	-1.2912
Н	-1.8762	-1.8369	-2.0534
Н	-0.2376	-1.2411	-1.7685
0	-1.0967	-2.4530	-0.3036
Н	-0.6739	-2.0582	0.4787
Н	-0.0959	1.2136	-1.2239
Н	-1.4687	3.1304	-0.0437
Н	-3.7485	2.2223	0.9025
S	2.5800	1.2371	0.3812
С	3.0625	0.8646	-1.2195
С	2.8420	-0.4565	-1.5124
С	2.2760	-1.1675	-0.4250
С	2.0727	-0.3826	0.6829
С	1.4173	-0.7636	1.9711
Н	1.7676	-1.7427	2.2939
0	-0.0034	-0.8932	1.8483
Н	-0.3538	-0.0706	1.4772
Н	1.6619	-0.0431	2.7560
Н	2.0104	-2.2152	-0.4542
Н	3.0858	-0.9013	-2.4659
Н	3.4971	1.6229	-1.8495

Table S17. Results from a (second-order intramonomer / third-order intermonomer) Symmetry-Adapted Perturbation Theory (SAPT2+(3)/aug-cc-pVDZ) binding energy decomposition of (furfuryl alcohol)₂, (thenyl alcohol)₂ and related dimers, comparing the magnitude of the attractive contributions (all values in kJ mol⁻¹) See Tables 1-2 for a comparison with the B2PLYP complexation energies.

	$\Delta E_{Electrostatic}$	$\Delta E_{ m Induction}$	$\Delta E_{ ext{Dispersion}}$	$\Delta E_{\rm Exch}$	ΔE_{Total}
$FA\cdots H_2O - GG' - W_{da}^a$	-57.2 [57.5%] ^j	-20.3 [20.4%]	-22.1[22.2%]	70.5	-29.0
TA…H₂O – GG-Wa ^b	-49.2 [55.5%]	-17.0 [19.2%]	-22.4 [25.3%]	61.7	-26.8
(FA) ₂ – G´G-G´G- Lp- ^c	-61.7 [49.7%]	-21.5 [17.3%]	-41.0 [33.0%]	85.7	-38.5
(FA) ₂ – G´G-GG- Lp- ^c	-60.3 [49.1%]	-21.7 [17.7%]	-40.8 [33.2%]	83.9	-39.0
(TA) ₂ – G´G´-G´G´- Lp+ ^c	-51.4 [43.9%]	-16.3 [13.9%]	-49.4 [42.2%]	76.9	-40.3
(TA) ₂ – G´G´-GG´- Lp+ ^c	-57.9 [46.9%]	-18.8[15.2%]	-46.8 [37.9%]	83.0	-40.4
(Cyclohexanol) ₂ ^d	-46.5 [51.8%]	-16.6 [18.5%]	-26.6 [29.7%]	60.5	-29.2
(Phenol) ₂ ^e	-41.8 [48.3%]	-28.8 [18.4%]	-15.9 [33.3%]	58.9	-27.6
(Thiophenol) ₂ ^f	-26.0 [29.4%]	-8.5 [9.6%]	-53.8 [60.9%]	61.3	-30.0
(H ₂ O) ₂ ^g	-35.7 [63.5%]	-9.5 [19.8%]	-11.1 [16.8%]	37.7	-18.6
(H ₂ S) ₂ ^h	-12.1 [49.0%]	-7.8 [19.3%]	-4.7 [31.7%]	19.2	-5.4
Pyridine - methane ⁱ	-3.0 [57.5%]	-10.9 [208.1%]	-0.7 [13.5%]	9.4	-5.2

^aJuanes, M.; Lesarri, A.; Pinacho, R.; Charro, E.; Rubio, J. E.; Enríquez, L.; Jaraíz, *Chem. - A Eur. J.* **2018**, *24* (25), 6564–6571. ^bJuanes, M.; Saragi, R. T.; Pinacho, R.; Rubio, J. E.; Lesarri, A., *Phys. Chem. Chem. Phys.* **2020**, *22* (22), 12412–12421. ^cThis work. ^dJuanes, M.; Usabiaga, I.; León, I.; Evangelisti, L.; Fernández, J. A.; Lesarri, A., *Angew. Chemie Int. Ed.* **2020**, *59* (33), 14081–14085. ^eSeifert, N. A.; Steber, A. L.; Neill, J. L.; Pérez, C.; Zaleski, D. P.; Pate, B. H.; Lesarri, A., *Phys. Chem. Chem. Phys.* **2013**, *15* (27), 11468–11477. ^fSaragi, R. T.; Juanes, M.; Pérez, C.; Pinacho, P.; Tikhonov, D. S.; Caminati, W.; Schnell, M.; Lesarri, A., *J. Phys. Chem. Lett.* **2021**, *12* (5), 1367–1373. ^gDyke, T. R.; Mack, K. M.; Muenter, J. S., *J. Chem. Phys.* **1977**, *66* (2), 498–510. ^hDas, A.; Mandal, P. K.; Lovas, F. J.; Medcraft, C.; Walker, N. R.; Arunan, E., *Angew. Chemie Int. Ed.* **2018**, *57* (46), 15199–15203. ⁱQ. Gou, L. Spada, M. Vallejo-López, A. Lesarri, E. J. Cocinero, W. Caminati, Phys. Chem. Chem. Phys., 2014, 16, 13041–13046. ^jRelative percentage of the total attractive interactions for each molecule.