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Fédérale de Lausanne, Batochime - Avenue Forel 2, Lausanne, 1015 Switzerland

2 Straetmans High TAC GmbH, Hamburg, Germany
3 Department of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences,

Institute of Chemical Process Fundamentals, Prague, Czech Republic
4 Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst́ı nad
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1 Dissipative particle dynamics: full model description

In this section we provide a complete description of the model and complements the brief overview of the main
text. The DPD model is a particle-based approach in which the material that composes the system is modelled
as a collection of point particles that represents lumps of the material. Each DPD particle possess a position
ri, mass mi and velocity vi. The dynamics of the particle position is controlled by the Newton equation with
the force acting on the ith particle fi =

∑
j fij ,

dri
dt

= vi (S1)

and

mi
dvi

dt
= fi (S2)

.
In DPD all forces are pairwise additive and separable into three contributions

fij = fCij + fRij + fDij (S3)

corresponding to the conservative, random and dissipative forces, respectively. The conservative force is derived
from a potential fC = −∇V (rij) that depends on the interparticle distance between center of masses rij =
|ri − rj |. The potential V (rij) is a corse-grained potential that specifies the interaction between beads.

The dissipative and random forces also act in the direction of the interparticle separation vector rij = ri−rj ,
and effectively account form the coarse-grained degrees of freedom,

fDij = −γijω
D(rij) (r̂ij · vij) r̂ij (S4)

for the dissipative force and

fRij = σijω
R(rij)

ξij√
∆t

r̂ij (S5)

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022



Figure S1: Colormaps corresponding to the phase diagram Nb vs ∆aAS in figure 4 in the main
text. 4 observables are presented: Fractions of A and B beads absorbed at the walls ΦA and ΦB in (a) and (b),
respectively. Additionally the perpendicular to overall radius of gyration of the backbone and the full molecule,
in (c) and (d), respectively. (a) and (b) share the same colorbar scale, as well as (c) with (d).

for the random force contributions. The unit interparticle vector is r̂ij = rij/rij and the relative velocity is
vij = vi − vj . The weight functions ωD(r) and ωR(r) vanish for r > rc with rc being the cut-off radius for
DPD interactions. Parameter γij is the friction coefficient and σij is the noise amplitude. The Gaussian noise
ξij has zero mean and unit variance and is independent for each pair of interacting particles, while ∆t is the
time step. In order to satisfy the fluctuation-dissipation theorem, the weight functions are related by

ωD(r) =
[
ωR(r)

]2
(S6)

and
σ2
ij = 2γijkBT (S7)

where the standard form for the weight functions are

ωD(r) =
[
ωR(r)

]2
=

(
1− r

rc

)2

(S8)

for r < rc and zero otherwise. Similarly, following Groot and Warren[Groot and Warren(1997)], the conservative
unbonded force is often chosen as

fC,u
ij (rij) = aij (1− rij/rc) r̂ij (S9)

for r < rc and zero otherwise. The prefactor aij is the maximum repulsion between two particles i and j and
again rc specifies the cut-off of the DPD interaction. Additionally, particles belonging to a molecule experience
bonded interaction corresponding to the connection between beads in the polymer chain. We select a harmonic
spring potential of the type

fC,b
i,i+1 = −K (ri,i+1 − r0) r̂i,i+1 (S10)

acting between two consecutive beads i and i + 1. The parameter K is the spring constant and r0 is the
equilibrium distance.

2 Colormaps of observables for the phase diagram of Nb vs ∆aAS

The phase diagram in figure 4 in the main text is constructed based on the values of the observables characterising
the sorption and conformation behaviour at the surface. To facilitate reproducibility, figure S1 shows the
colourmaps of the different observables.
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3 Sorption diagram for molecule with weakly adsorbing side chains

In figure 4 of the main text we have explored the adsorption and conformation of strongly interacting side chain
B beads with the walls. Contrary to that, in figure S2 we perform the same parameter space exploration for
weakly interacting side chains, ∆aBW = −7.5, assigned based on the calibration curve in figure 2 (a). A less
rich phase diagram can be observed in figure S2 (a) and (b), respectively for LGD (m = 60) and HGD (m = 20)
molecules. As a consequence of the less favourable B-wall interaction, we only observe two types of behaviour:
(1) all-molecule adsorption, driven by the overall poor solvent that leads to the segregation of the molecule into
the surface; and (2) free molecule in which the solvent is not bad enough for the molecule to adsorb at the wall.

4 Role of backbone length

In the collapsed morphology in figure 4 in the main text (ie, the blue squares phase points), the backbone
acquired a collapsed, isotropic shape in the vicinity of the walls. This is a consequence of the insolubility of
the backbone beads leading to a micellar morphology. Nonetheless, given the heterogeneity of the molecule, we
study the role of the backbone length, in order to assert whether non-isotropic conformations of the backbone
may occur. 4 In figure S3 the backbone length is explored under two assumption: I. maintaining the spacing
between grafted chains fixed m = 60, we assure that the ratio of A and B beads in the system remains constant.
II. keeping the number of side chains fixed, which leads to a larger ratio of A over B beads in the molecule. In
both cases the logarithmic plot shows a uniform scaling of the radius of gyration of the A beads in the system.
This suggests that there is no conformational transition in the collapsed backbone, which simply grows in size
as the number of A beads is increased.

A simple scaling hypothesis can assume that the collapsed A-rich globule is an isotropic sphere with radius
R0 =

√
3/5Rg. If we assume a uniform density of A beads ρA ∼ ρ within the isotropic globule, we express

Rg =

√
3/5(

4
3πρ

)1/3N1/3
A (S11)

which is shown to approximately capture the scaling in figure S3. Deviations from this simple scaling hypothesis
are more pronounced for shorter backbone lengths, where the backbone shape can be expected to be less
isotropic, as the molecule conformation is more dependent on the side chain acting as anchors.

5 Formation of droplet in bulk

In the second part of the main text we explore finite concentrations of amphiphillic grafted molecules. The solu-
bility of the backbone in amphiphillic grafted polymers has been shown to lead to rich phase behaviour[Borisov and Zhulina(2005)].
Here we explore the role of the lyophibicity of the backbone beads in the micelle formation in the bulk (ie, in
the absence of walls). Periodic boundary conditions are therefore introduced along all dimensions of the system.

In figure S4 we explore the cluster formation for a moderate number density ρmol/ρ = 0.1, where ρmol is the
number density of beads belonging to molecules, for a molecule with configuration 300− 38− 60 and the same
standard interaction parameters as described in table 1 . In (a) the lyophobicity of the backbone is explored
via ∆aAS . An approximate value ∆aAS ∼ 3 can be identified as critical, below which we observe a uniform
distribution of molecule beads. This can be mapped into a critical Flory-Huggins parameter χcrit

AB ∼ 0.86, which
signals the transition from the Θ solution into the formation of micelles. In (b), in such regime the cluster size
distribution indicates an algebraic decay (open symbols). Contrary to that, strongly lyophobic backbone beads
lead to the formation of micelles and a well-defined cluster size in (b).

In (c), (d) and (e) we show the radial distribution function of bead pairs with species backbone-branches
(AB), branches-solvent (BS) and backbone-solvent (AS), respectively. The transition from the Θ solution of
backbone to the micelle formation is clear in (e), where solvent beads are expelled from the micelles, while the
backbone solubility clearly plays no role in the branches-solvent pair distribution in (d), due to the branches
neutral interaction with the solvent.

6 Additional figures corresponding to the monodisperse nondilute
case (fig. 5 )

In order to support the curves shown in figure 5 we include figure S5 where we show the density curves (left
column) and snapshots (right column) for three representative number densities: σ∗

B = 0.6 (a) and (b), σ∗
B = 3.6

(c) and (d) and σ∗
B = 7.9 (e) and (f). The curves in the left show the vertical densities for a distance y away

from the adsorbing walls, for the two molecule species: backbone (A,in red) and side chains (B, in blue). The
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Figure S2: Sorption diagram of a molecule with weak branch-wall interaction ∆aBW = −7.5. The molecule
is 300−Nb −m with backbone solubility given by ∆aAS . Two grafting densities are explored in (a) LGD and
(b) HGD, respectively m = 60 and m = 20. The phase point schematic representation are shown in the right,
corresponding to: black dot, non-adsorbed; and red asterisk, all-molecule weakly adsorbed. Phase points are
determined via observables described in section 2.3 .
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Figure S3: Role of backbone length NA in the A bead radius of gyration RA
g . Two limiting cases are

considered: fixed m = 60 spacing between grafted side chains, and fixed number of side chains nchains
B = 4. For

comparison, the scaling a(ρ)N
1/3
A with a(ρ) =

√
3/5/(4/3πρ)1/3.

Figure S4: Cluster formation of amphiphillic molecule 300 − 38 − 60 in bulk for different solvent quality by
increasing the lyophobicity of the backbone via ∆aAS . The molecule bead concentration is ρm/ρ = 0.1. In
(a) the mean cluster size in terms of the backbone insolubility and in (b) the cluster size distribution in log-log
scale. A high frequency of zero values of the PDF PDF (c) = 0 is due to the discrete nature of the micelle,
when formed, which are constituent of a discrete number of molecules with each molecule made of a large
number of beads. In (c), (d) and (e) we show the radial distribution function gij(r) of beads pairs of species
backbone-branches (AB), branches-solvent (BS) and backbone-solvent (AS), respectively.
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emergence of secondary density peaks of side chains away from the surface is clear in (c) and (e). In the right
column X − Z plane is shown, in order to facilitate the visualisation of the the system.
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Figure S5: Density profiles (left) and top-view snapshots (right) corresponding to the curves shown in figure 5
in the main text. Three relevant values of the nominal B coverage are shown: σ∗

B = 0.6 for (a) and (c); σ∗
B = 3.6

for (a) and (c); and σ∗
B = 7.9 for (a) and (c);
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