Supplementary material

Structure-dependent mechanical properties of self-folded

two-dimensional nanomaterials

Anran Wei^a, Han Ye^b, Fenglin Guo^{a*}

^a School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering), Shanghai Jiao Tong University, Shanghai 200240, China

^b State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

* Corresponding author, E-mail: flguo@sjtu.edu.cn

Fig. S1 Atomistic model of MD simulation for uniaxial tension of self-folded graphene.

Fig. S2 Stress-strain curves obtained from MD simulations for self-folded graphene under uniaxial tension.

Fig. S3 Local observation of the atomistic model of MD simulation after equilibrium.

Fig. S4 Effects of temperature on the agreement between the theoretical model and MD simulations. The (a) Young's modulus and (b) strength with different temperature as 1 K, 150 K and 300 K.

Fig. S5 Comparison of stress-strain curves for simulations under 1 K and 300 K.

Fig. S6 Effects of strain rate on the agreement between the theoretical model and MD simulations. The (a) Young's modulus and (b) strength with different strain rates as 1×10^{-4} ps⁻¹, 5×10^{-5} ps⁻¹ and 2×10^{-5} ps⁻¹.

Table. S	1 Origina	l results of	Young's	modulus	obtained	from M	D simulations.

	Group 1	Group 2	Group 3	Mean	Standard Deviation	Coefficient of variation
$l_{\rm f} = 15 \ {\rm nm}$	662 GPa	670 GPa	668 GPa	667 GPa	4.16 GPa	0.624 %
$l_{\rm f}=25~{ m nm}$	758 GPa	752 GPa	750 GPa	753 GPa	4.16 GPa	0.553 %
$l_{\rm f}=50~{ m nm}$	829 GPa	822 GPa	824 GPa	825 GPa	3.61 GPa	0.437 %
$l_{\rm f} = 100 \ \rm nm$	876 GPa	879 GPa	879 GPa	878 GPa	1.73 GPa	0.197 %

Table. S2 Original results of tensile strength obtained from MD simulations.

	Group 1	Group 2	Group 3	Mean	Standard Deviation	Coefficient of variation
$l_{\rm f} = 15 \; {\rm nm}$	11.8 GPa	12.3 GPa	12.1 GPa	12.1 GPa	0.262 GPa	2.17 %
$l_{\rm f}=25~{ m nm}$	12.5 GPa	12.9 GPa	13.0 GPa	12.8 GPa	0.307 GPa	2.40 %
$l_{\rm f}=50~{ m nm}$	12.9 GPa	13.4 GPa	13.5 GPa	13.2 GPa	0.329 GPa	2.48 %
$l_{\rm f} = 100 \ \rm nm$	12.9 GPa	13.7 GPa	13.9 GPa	13.5 GPa	0.551 GPa	4.09 %