Supplementary Information: pH Dependent Reactivity of Boehmite Surfaces From First Principles Molecular Dynamics

William Smith,*,† Maxime Pouvreau,† Kevin Rosso,‡ and Aurora E. Clark*,†,¶,‡

†Department of Chemistry, Washington State University, Pullman, WA 99164
‡Pacific Northwest National Laboratory, Richland, WA 99354
¶Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164

E-mail: william.t.smith@wsu.edu; auclark@wsu.edu

List of Figures

S1	Boehmite equilibrium morphologies with two degrees of hydration $\ldots \ldots$	5
S2	(100) surface used for local environment testing. \ldots \ldots \ldots \ldots \ldots	7

List of Tables

S1	Prior experimental results of the point of zero change (PZC) of boehmite	3
S2	Size of boehmite supercell and corresponding waters at the interface within	
	the classical molecular dynamics simulations	3
S3	Force field parameters employed for the classical molecular dynamics simula-	
	tions	4
S4	Harmonic potential parameters for the removed proton	5
S5	Surface aluminum coordination numbers and their density and surface energies	
	under differing solvation models	6
S6	Block Averaging of the free energies of the deprotonation of singly-protonated	
	surface hydroxides and hydronium	7
S7	Block Averaging of the free energies of the deprotonation of doubly-protonated	
	surface hydroxides and hydronium	8
S8	Surface Energy Calculations for under given pH environments	8

Prior Experimental Results

Authors	PZC
Kaledin et al^1	9.5 ± 0.5
Kaledin et al^1	11.4 ± 0.2
$Parks^2$	7.7 - 9.4
$Chivas-Joly^3$	10.0
Tanaka et al. ⁴	8.7-9.2

Table S1: Prior experimental results of the point of zero change (PZC) of boehmite.

Classical Molecular Dynamics Simulations

The classical molecular dynamics simulations were performed using the LAMMPS package. Initial equilibration was done using the NPT and then the NVT ensemble using the Nose-Hoover thermostat and barostat with a relaxation time of 0.1 ps with a time step of 1.0 fs. Each ensemble was ran for a minimum of 6 ns before starting the production run. The production run used the NVE ensemble with the same timestep as equilibration for a total of 15 ns, the atomic coordinates were captured every 200 fs. Three sets of atomic coordinates from the last 5 n of the production run were used as initial coordinates for the AIMD trajectory to ensure the model was not in a local minima on the potential energy surface.

edge	\hat{x} (Å)	\hat{y} (Å)	\hat{z} (Å)	Waters
(100)	95.00	61.20	25.96	2835
(010)	23.01	127.15	29.67	1260
(001)	31.63	61.20	86.00	3150

Table S2: Size of boehmite supercell and corresponding waters at the interface within the classical molecular dynamics simulations.

Table S3: Force field parameters employed for the classical molecular dynamics simulations.

Nonbonded (Coulomb and Lennard-Jones)					
Species	Symbol	q(e)	$\epsilon (\rm kcal/mol)$	σ (Å)	
Octahedral	Al	1.5750	1.3298 x 10-6	4.7943	
Bridging O	Ob	-1.0500	0.1554	3.5532	
Hydroxyl O	Oh	-0.9500	0.1554	3.5532	
Hydroxyl H	Hh	0.4250	0	0	
Water O.	Ow	-0.8200	0.1554	3.5532	
Water H	Hw	0.4100	0	0	
	Morse Bond Pot	ential $(E_{\text{bond}}^{\text{Morse}} = D_0$	$\int_{0} [1 - e^{-\alpha(r-r_0)}]^2$		
bo	ond	D_o	α	r _o	
Oh	-Hh	132.2491	2.1350	0.9572	
	Harmonic Bond	Potential ($E_{\rm bond}^{\rm harmon}$	$^{\mathrm{hic}} = k(r - r_0)^2)$		
bo	ond	k (kcal/mol \AA^2)		r_o	
Ow-Hw		554.1349		1.00	
	Harmonic Angle Potential $(E_{\text{angle}}^{\text{harmonic}} = k(\theta - \theta_0)^2)$				
an	gle	k (kcal/mol rad^2)		θ (deg)	
Al-O	h-Hh	45.770		109.47	

Static DFT and Ab initio Molecular Dynamics

	Acids	N_d	d_0	k_d	n_{lpha}	α_0	α_d
	μ-1	1	1.89	0.1	1	$2.0 (Al - O - H_d)$	0.1
Edge Surface (100)	μ -2	1	1.89	0.1	2	$2.0 (Al - O - H_d)$	0.1
Edge Surface (100)	μ -3	1	1.89	0.1	3	$2.0 (Al - O - H_d)$	0.1
	H_3O^+	3	1.89	1.0	2	$1.94 (H - O - H_d)$	0.1
Basal Surface (010)	μ-2	1	1.89	0.1	2	$2.0 (Al - O - H_d)$	0.1
Dasai Sullace (010)	H_3O^+	3	1.89	1.0	2	$1.94 (H - O - H_d)$	0.1
	μ -1	1	1.89	0.1	1	$2.0 (Al - O - H_d)$	0.1
Edge Surface (001)	$\parallel \mu$ -3	1	1.89	0.1	3	$2.0 (Al - O - H_d)$	0.1
	H_3O^+	3	1.89	1.0	2	$1.94 (H - O - H_d)$	0.1
	μ-1	1	1.89	0.1	1	$2.0 (Al - O - H_d)$	0.1
Edge Surface (101)	$\parallel \mu$ -2	1	1.89	0.1	2	$2.0 (Al - O - H_d)$	0.1
	$\parallel H_3O^+$	3	1.89	1.0	2	$1.94 (H - O - H_d)$	0.1

Table S4: Harmonic potential parameters for the removed proton

Figure S1: Boehmite equilibrium morphologies with two degrees of hydration

Surface	d(CN Al-O)	γ
(001) vacuum		
2w	5: 4.29, 6: 4.29	184
2 w- μ_3 OH ^a	5: 4.29, 6: 4.29	190
$4\mathrm{w}$	6: 8.59	140, 162
(001) solvated		
2w-DFTMD	6: 8.14; 5: 0.74	91
4w-DFTMD	6: 8.14; 5: 0.74	79
(010) vacuum		
0w	6: 9.37	$\overline{71}$
$1 \mathrm{wHB^{b}}$	6	27, 45
(010) solvated		
0w-DFTMD	6: 9.37	17
(100) vacuum		
0w	5: 5.44	170
2w	6: 5.44	154
2 w- μ_3 OH ^a	6: 5.44	<u>128</u>
2w- 2 wHB ^b	6: 5.44	78, 111
(100) solvated		
2w-DFTMD	6: 5.44	27
(101) vacuum		
$2w^{a}$	5: 3.59; 6: 3.59	169
$4w^{a}$	6: 7.17	<u>82</u> , 78
(101) solvated		
4w-DFTMD	6: 7.17	53

Table S5: Surface aluminum coordination numbers and their density, d: density in number per nm², and surface energies (γ in kcal/mol/nm²) under differing solvation models

Current work: all non-DFTMD surface energies from RPBE-D3/DZVP-PW, all DFTMD surface energies are average potential energies with RPBE-D3/DZVP-PW MD. Italics: RPBE-D3/PAW from Prange et al.⁵ d: density in number per nm²; w: water; sw: surface water; (*hkl*)-Xw: X H₂O per surface initially coordinated to Al, normalized to the unit cell. For every surface: the lowest γ for surfaces without non-coordinating H₂O are underlined. The μ_3 O are bare oxygens unless specified otherwise. ^a Surface selected for the pKa calculations, snapshot in Figure ^b XwHB: X water molecules are not coordinated to the Al but form HBs with the surface.

Figure S2: (100) surface used for local environment testing. Aluminum, oxygen, and hydrogen atoms are shown in pink, red, and white respectively. The two sites tested for their acidity constant are shown in blue.

Surface	Protonated species	Block timescale length (ns)	Block 1 ΔA	Block 1 ΔA	Block 3 ΔA	Standard Deviation
(010)	μ_2	2	20.645	20.664	20.648	0.010
(010)	H_3O^+	2	19.531	19.553	19.512	0.011
	μ_1		20.290	20.309	20.281	0.014
(100)	μ_2	2.33	19.995	19.978	20.031	0.027
(100)	μ_3		19.458	19.424	19.448	0.017
	H_3O^+		18.887	18.904	18.887	0.010
	μ_1	2.33	20.175	20.131	20.137	0.024
(001)	μ_2		19.127	19.010	19.096	0.017
	H_3O^+		18.658	18.602	18.639	0.028
	μ_1		20.076	20.048	20.094	0.023
(101)	μ_2	3	19.874	19.860	19.941	0.043
	H_3O^+		18.662	18.650	18.671	0.010

Table S6: Block Averaging of the free energies of the deprotonation of singly-protonated surface hydroxides and hydronium

Table S7: Block Averaging of the free energies of the deprotonation of doubly-protonated surface hydroxides and hydronium

Surface	Protonated species	Block timescale length (ns)	Block 1 ΔA	Block 1 ΔA	Block 3 ΔA	Standard Deviation
(010)	μ_2	2	19.898	19.880	19.911	0.016
(100)	μ_1	2.33	19.640	19.723	19.653	0.045
(001)	μ_1	2.33	19.347	219.384	19.350	0.021
(101)	μ_1	3	19.517	19.470	19.508	0.025

Table S8: Surface Energy Calculations under given pH environments, γ given in kcal/mol/nm²

Surface	$\gamma_{ m neutral \ surface}$	$\gamma_{pH=3}$	$\gamma_{pH=5}$	$\gamma_{pH=10}$	
(001)	79	47.605	77.897	156.655	
(010)	17	16.964	20.172	20.172	
(100)	27	28.161	31.914	44.017	
(101)	53	51.213	51.213	90.181	

References

- Kaledin, L. A.; Tepper, F.; Vesga, Y.; Kaledin, T. G. Boehmite and Akaganeite 1D and 2D Mesostructures: Synthesis, Growth Mechanism, Ageing Characteristics and Surface Nanoscale Roughness Effect on Water Purification. *Journal of Nanomaterials* 2019, 1–10.
- (2) Parks, G. A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. *Chemical Reviews* 1965, 65, 177–198.
- (3) Chivas-Joly, C.; Longuet, C.; Pourchez, J.; Leclerc, L.; Sarry, G.; Lopez-Cuesta, J.-M. Physical, morphological and chemical modification of Al-based nanofillers in by-products of incinerated nanocomposites and related biological outcome. *Journal of Hazardous Materials* **2019**, *365*, 405–412.
- (4) TANAKA, S.; NAGAI, H.; KATO, A. Adsorption of Sulfate Ion on Aluminium Hydroxide. NIPPON KAGAKU KAISHI 1991, 1303–1305.
- (5) Prange, M. P.; Zhang, X.; Bowden, M. E.; Shen, Z.; Ilton, E. S.; Kerisit, S. N. Predicting Surface Energies and Particle Morphologies of Boehmite (Î³-AlOOH) from Density Functional Theory. *The Journal of Physical Chemistry C* 2018, *122*, 10400–10412.