Electronic Supplementary Information for: Stoichiometric Network Analysis in Reaction Networks Yielding Spontaneous Mirror Symmetry Breaking in Prebiotic Atmosphere

Rubén D. Bourdon-García*, Jesús Ágreda, Javier Burgos-Salcedo, David Hochberg, Josep M. Ribó, Pedro Bargueño, and Andrés Estupiñan Salamanca

The extreme currents matrix E and the explicit extreme currents of KNS-LES, KNSCI and KNSCI-LES models

Extreme currents matrix \mathbf{E} of KNS-LES model.

$$
\mathbf{E}=\left(\begin{array}{llllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right),
$$

here, the columns are the extreme currents $E_{p}(p=1, \ldots, 24)$, from left to right, and the rows denote the reactions $R_{j}(j=1, \ldots, 14)$ from top to bottom. We verified that $\nu \mathbf{E}=\mathbf{0}(\Leftrightarrow \nu \mathbf{v}=\mathbf{0})$. The explicit extreme currents of the stoichiometric network of KNS-LES model are in Table S1.

Table S1. Extreme currents of KNS - LES model.

E_{i}	Subnetwork	Reactions
E_{1}	$I N H+H C N+L-C N \rightharpoonup L-C N+D-C N, D-C N \rightharpoonup D-A A+N H_{3}$	R_{11}, R_{14}
E_{2}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N, D-C N \rightharpoonup D-A A+N H_{3}$	R_{7}, R_{14}
E_{3}	$I N H+H C N \rightharpoonup D-C N, D-C N \rightharpoonup D-A A+N H 3$	R_{3}, R_{14}
E_{4}	$I N H+H C N+L-C N \rightharpoonup L-C N+D-C N, L-C N+D-C N \rightharpoonup I N H+H C N+L-C N$	R_{11}, R_{12}
E_{5}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N, D-C N+L-C N \rightharpoonup L-C N+I N H+H C N$	R_{7}, R_{12}
E_{6}	$I N H+H C N \rightharpoonup D-C N, D-C N+L-C N \rightharpoonup L-C N+I N H+H C N$	R_{3}, R_{12}
E_{7}	$I N H+H C N+L-C N \rightharpoonup L-C N+D-C N, 2 D-C N \rightharpoonup I N H+H C N+D-C N$	R_{11}, R_{8}
E_{8}	$I N H+H C N+L-C N \rightharpoonup L-C N+D-C N, D-C N \rightharpoonup I N H+H C N$	R_{11}, R_{4}
E_{9}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N, 2 D-C N \rightharpoonup I N H+H C N+D-C N$	R_{7}, R_{8}
E_{10}	$I N H+H C N \rightharpoonup D-C N, 2 D-C N \rightharpoonup I N H+H C N+D-C N$	R_{3}, R_{8}
E_{11}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N, D-C N \rightharpoonup I N H+H C N$	R_{7}, R_{4}
E_{12}	$I N H+H C N \rightharpoonup D-C N, D-C N \rightharpoonup I N H+H C N$	R_{3}, R_{4}
E_{13}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N, L-C N \rightharpoonup L-A A+N H 3$	R_{9}, R_{13}
E_{14}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N, L-C N \rightharpoonup L-A A+N H 3$	R_{5}, R_{13}
E_{15}	$I N H+H C N \rightharpoonup L-C N, L-C N \rightharpoonup L-A A+N H 3$	R_{1}, R_{13}
E_{16}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N, D-C N+L-C N \rightharpoonup I N H+H C N+D-C N$	R_{9}, R_{10}
E_{17}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N, L-C N+D-C N \rightharpoonup D-C N+I N H+H C N$	R_{5}, R_{10}
E_{18}	$I N H+H C N \rightharpoonup L-C N, L-C N+D-C N \rightharpoonup D-C N+I N H+H C N$	R_{1}, R_{10}
E_{19}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N, 2 L-C N \rightharpoonup I N H+H C N+L-C N$	R_{9}, R_{6}
E_{20}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N, L-C N \rightharpoonup I N H+H C N$	R_{9}, R_{2}
E_{21}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N, 2 L-C N \rightharpoonup I N H+H C N+L-C N$	R_{5}, R_{6}
E_{22}	$I N H+H C N \rightharpoonup L-C N, 2 L-C N \rightharpoonup I N H+H C N+L-C N$	R_{1}, R_{6}
E_{23}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N, L-C N \rightharpoonup I N H+H C N$	R_{5}, R_{2}
E_{24}	$I N H+H C N \rightharpoonup L-C N, L-C N \rightharpoonup I N H+H C N$	R_{1}, R_{2}

Extreme currents matrix \mathbf{E} of KNSCI model.

$$
\mathbf{E}=\left(\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right),
$$

each extreme current $E_{p}(p=1, \ldots, 12)$ represents a column vector of the matrix \mathbf{E}. The explicit extreme currents of KNSCI model are in Table S2.

Table S2. Extreme currents of KNSCI model.

E_{i}	Subnetwork	Reactions
E_{1}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N \rightharpoonup I N H+H C N+D-C N$	R_{7}, R_{8}
E_{2}	$I N H+H C N \rightharpoonup D-C N \xrightarrow{\text { D-CN }} I N H+H C N+D-C N$	R_{3}, R_{8}
E_{3}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N \xrightarrow{-D-C N} I N H+H C N$	R_{7}, R_{4}
E_{4}	$I N H+H C N \rightharpoonup D-C N \rightharpoonup I N H+H C N$	R_{3}, R_{4}
E_{5}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N \rightharpoonup I N H+H C N+L-C N$	R_{5}, R_{6}
E_{6}	$I N H+H C N \rightharpoonup L-C N \xrightarrow{L-C N} I N H+H C N+L-C N$	R_{1}, R_{6}
E_{7}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N \xrightarrow{-L-C N} I N H+H C N$	R_{5}, R_{2}
E_{8}	$\begin{array}{rl} I N H+H C N+D-C N & 2 D-C N \\ & \xrightarrow{-D-C N,-L-C N} D, L-A D C N+N H_{3} \end{array}$	R_{5}, R_{7}, R_{9}
$I N H+H C N+L-C N \rightharpoonup 2 L-C N$		
E_{9}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N \quad D, L-A D C N+N H_{3}$	R_{3}, R_{5}, R_{9}
E_{10}	$I N H+H C N \rightharpoonup L-C N \rightharpoonup I N H+H C N$	R_{1}, R_{2}
E_{11}	$\begin{gathered} I N H+H C N \rightharpoonup L-C N \\ I N H+H C N+D-C N \rightharpoonup 2 D-C N \end{gathered}$	R_{1}, R_{7}, R_{9}
	$I N H+H C N \rightharpoonup D-C N$	
E_{12}	$I N H+H C N \rightharpoonup L-C N \quad D, L-A D C N+\mathrm{NH}_{3}$	R_{1}, R_{3}, R_{9}

Extreme currents matrix \mathbf{E} of KNSCI-LES model.

$$
\mathbf{E}=\left(\begin{array}{lllllllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right),
$$

each extreme current $E_{p}(p=1, \ldots, 27)$ represents a column vector of matrix \mathbf{E}. The explicit extreme currents of KNSIC-LES model are in Table S3.

Table S3. Extreme currents of KNSIC-LES model.

E_{i}	Subnetwork	Reactions
E_{1}	$I N H+H C N+L-C N \rightharpoonup D-C N+L-C N \rightharpoonup I N H+H C N+L-C N$	R_{11}, R_{12}
E_{2}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N \xrightarrow[-D-C N]{L-C N} I N H+H C N+L-C N$	R_{7}, R_{12}
E_{3}	$I N H+H C N \rightharpoonup D-C N \xrightarrow{L-C N} I N H+H C N+L-C N$	R_{3}, R_{13}
E_{4}	$I N H+H C N+L-C N \rightharpoonup D-C N+L-C N \xrightarrow{-L-C N} \xrightarrow{-C N} I N H+H C N+D-C N$	R_{8}, R_{11}
E_{5}	$I N H+H C N+L-C N \rightharpoonup D-C N+L-C N \xrightarrow{-L-C N} I N H+H C N$	R_{4}, R_{11}
E_{6}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N \rightharpoonup I N H+H C N+D-C N$	R_{7}, R_{8}
E_{7}	$I N H+H C N \rightharpoonup D-C N \xrightarrow{D-C N} I N H+H C N+D-C N$	R_{3}, R_{8}
E_{8}	$I N H+H C N+D-C N \rightharpoonup 2 D-C N \xrightarrow{-D-C N} I N H+H C N$	R_{7}, R_{4}
E_{9}	$I N H+H C N \rightharpoonup D-C N \rightharpoonup I N H+H C N$	R_{3}, R_{4}
E_{10}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N \rightharpoonup I N H+H C N+D-C N$	R_{9}, R_{10}
E_{11}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N \xrightarrow{-L-C N} I N H+H C N+D-C N$	R_{5}, R_{10}
E_{12}	$I N H+H C N \rightharpoonup L-C N \xrightarrow{D-C N} I N H+H C N+D-C N$	R_{1}, R_{10}
E_{13}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N \xrightarrow[-D-C N]{L-C N} I N H+H C N+L-C N$	R_{9}, R_{6}
E_{14}	$I N H+H C N+D-C N \rightharpoonup D-C N+L-C N \xrightarrow{-D-C N} I N H+H C N$	R_{4}, R_{11}
E_{15}	$\begin{array}{rl} I N H+H C N+D-C N & -L-C N+D-C N \\ & \frac{-D-C N}{-L-C N} D, L-A D C N \\ I N H+H C N+L-C N & D-C N+L-C N \end{array}$	R_{9}, R_{11}, R_{13}
E_{16}	$\begin{gathered} I N H+H C N+D-C N \rightharpoonup 2 D-C N \\ \\ I N H+H C N+D-C N \rightharpoonup D-C N+L-C N \end{gathered}$	R_{7}, R_{9}, R_{13}
E_{17}	$I N H+H C N \rightharpoonup D-C N$ $I N H+H C N+D-C N \rightharpoonup D-C N+L-C N$	R_{3}, R_{9}, R_{13}
E_{18}	$I N H+H C N+D-C N \rightharpoonup 2 L-C N \rightharpoonup I N H+H C N+L-C N$	R_{5}, R_{6}
E_{19}	$I N H+H C N \rightharpoonup L-C N \xrightarrow{L-C N} I N H+H C N+L-C N$	R_{1}, R_{6}
E_{20}	$I N H+H C N+L-C N \rightharpoonup 2 L-C N \xrightarrow{-L-C N} I N H+H C N$	R_{5}, R_{2}
E_{21}	$\begin{gathered} I N H+H C N+L-C N \rightharpoonup 2 L-C N \\ I N H+H C N+L-C N \rightharpoonup L-C N+D-C N \end{gathered}$	R_{5}, R_{11}, R_{13}
E_{22}	$\begin{aligned} I N H+H C N+L-C N & \rightharpoonup 2 L-C N \\ & \frac{-D-C N}{-L-C N} D, L-A D C N \\ I N H+H C N+D-C N & -2 D-C N \end{aligned}$	R_{5}, R_{7}, R_{13}
E_{23}	$\begin{aligned} & I N H+H C N \rightharpoonup D-C N \\ & I N H+H C N+L-C N \rightharpoonup \underset{2 L-C N}{\stackrel{-L-C N}{ } D, L-A D C N} \\ & I N \end{aligned}$	R_{3}, R_{5}, R_{13}
E_{24}	$I N H+H C N \rightharpoonup L-C N \rightharpoonup I N H+H C N$	R_{1}, R_{2}
E_{25}	$\begin{aligned} & I N H+H C N \rightharpoonup L-C N \\ & I N H+H C N+L-C N \rightharpoonup L-C N+D-C N \end{aligned}$	R_{1}, R_{11}, R_{13}
E_{26}	$\begin{aligned} & I N H+H C N \rightharpoonup L-C N \\ & I N H+H C N+D-C N \rightharpoonup 2 D-C N \end{aligned}$	R_{1}, R_{7}, R_{13}
E_{27}	$\begin{aligned} & I N H+H C N \rightharpoonup L-C N \\ & I N H+H C N \rightharpoonup D-C N \end{aligned}$	R_{1}, R_{3}, R_{13}

