This copy of the ESI replaces the previous version published on 08 April 2022

Supporting Information: Beyond Structural Insight: A Deep Neural Network for the Prediction of Pt $L_{2/3}$ -edge X-ray Absorption Spectra

Luke Watson ¹, Conor Rankine,¹ and Thomas J. Penfold ¹

List of Figures

- S1 Average (black line) and standard deviation (grey shaded) over all of the Pt a) L₃-and b) L₂-edge XANES spectra contained in the training dataset used in this work.
 3
- S2 Example absorption cross-sections for the Pt L₂ edge of C₃₈H₂₇ClO₂P₂Pt (CCSD code: BEDMAA) a) without any postprocessing, b) broadened with a fixed-width Lorentzian function (FWHM = 0.5 eV), and c) broadened with an arctangent convolution model.
- S3 Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₂-edge XANES spectra in a) C₃₁H₂₆N₂PtSi (CCSD code: BAZBIP), b) C₃₄H₃₃Cl₂NP₂Pt (CCSD code: DAFDEW), c) C₁₆H₈Cl₂N₄O₄Pt (CCSD code: IWALEZ), d) C₁₂H₁₉BrN₂Pt (CCSD code: DEGPAG), e) C₁₇H₃₃IOP₂Pt (CCSD code: MIVHAB), and f) C₆H₁₅BrN₃O₂Pt (CCSD code: MUQLOA). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the arctangent convolutional model.
- S4 Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₂edge XANES spectra in a) C₄₄H₄₈BNO₂Pt (CCSD code: DAGCAS), b) C₃₉H₃₆BCIN₃Pt (CCSD code: DESQEY), c) C₁₅H₁₁ClN₃Pt (CCSD code: TAXBOM), d) C₁₇H₁₉F₂N₃OPt (CCSD code: TAKWOU), e) $C_{26}H_{20}I_2N_2Pt$ (CCSD code: TAVVOB), and f) $C_6H_{10}CI_2N_2Pt$ (CCSD code: TECWAA). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the fixed-width Lorentzian (FWHM = 0.5 eV) convolutional model. The spectra shown have then subsequently been broadened using the arctangent convolutional model to allow com-5 S5 Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₃edge XANES spectra in a) $C_{27}H_{26}As_2PtS_2$ (CCSD code: CATSOG), b) $C_{26}H_{24}Cl_2P_2Pt$ (CCSD code: DEBXUD), c) C₃₁H₂₅CINPPt (CCSD code: ZUJPEB), d) C₆H₁₆Cl₂N₂O₄Pt (CCSD code: MIPDOG), e) $C_{10}H_{14}CI_2O_4Pt$ (CCSD code: NAMLIW), and f) $C_{14}H_{12}F_{14}Pt$

(CCSD code: TATRUC). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the arctangent convolutional model. 6

¹ Chemistry – School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK, tom.penfold@ncl.ac.uk

- S6 Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₃-edge XANES spectra in a) C₃₁H₂₇Cl₂NP₂Pt (CCSD code: BATNOA), b) C₂₅H₂₃NO₂Pt (CCSD code: MIKFAQ), c) C₄₅H₃₄Cl₂O₂P₂Pt (CCSD code: MUMGEG), d) C₆H₁₀Cl₂N₂Pt (CCSD code: TECWAA), e) C₆H₆N₄Pt (CCSD code: TEFPOK), and f) C₁₄H₁₀ClN₃Pt (CCSD code: TELQEI). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the fixed-width Lorentzian (FWHM = 0.5 eV) convolutional model. The spectra shown have then subsequently been broadened using the arctangent convolutional model to allow comparison. 6
 S7 Histogram of the MSEs achieved on 530 held-out DNN-predicted Pt a) L₂- and c) L redge XANES spectra after arctangent convolution; average arctangent.

- S10 Comparison of the a) DNN-predicted and b) theoretical XANES spectra of $[Pt(ppy)(\mu tBu_2pz)]_2$ with (solid red line) and without (solid black line) the second Pt atom. 8

S1 Supplementary Results

Figure S1: Average (black line) and standard deviation (grey shaded) over all of the Pt a) L_3 - and b) L_2 -edge XANES spectra contained in the training dataset used in this work.

Figure S2: Example absorption cross-sections for the Pt L_2 edge of $C_{38}H_{27}CIO_2P_2Pt$ (CCSD code: BEDMAA) a) without any postprocessing, b) broadened with a fixed-width Lorentzian function (FWHM = 0.5 eV), and c) broadened with an arctangent convolution model.

Figure S3: Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₂-edge XANES spectra in a) $C_{31}H_{26}N_2PtSi$ (CCSD code: BAZBIP), b) $C_{34}H_{33}Cl_2NP_2Pt$ (CCSD code: DAFDEW), c) $C_{16}H_8Cl_2N_4O_4Pt$ (CCSD code: IWALEZ), d) $C_{12}H_{19}BrN_2Pt$ (CCSD code: DEGPAG), e) $C_{17}H_{33}IOP_2Pt$ (CCSD code: MIVHAB), and f) $C_6H_{15}BrN_3O_2Pt$ (CCSD code: MUQLOA). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the arctangent convolutional model.

Figure S4: Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₂-edge XANES spectra in a) $C_{44}H_{48}BNO_2Pt$ (CCSD code: DAGCAS), b) $C_{39}H_{36}BCIN_3Pt$ (CCSD code: DESQEY), c) $C_{15}H_{11}CIN_3Pt$ (CCSD code: TAXBOM), d) $C_{17}H_{19}F_2N_3OPt$ (CCSD code: TAKWOU), e) $C_{26}H_{20}I_2N_2Pt$ (CCSD code: TAVVOB), and f) $C_6H_{10}CI_2N_2Pt$ (CCSD code: TECWAA). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the fixed-width Lorentzian (FWHM = 0.5 eV) convolutional model. The spectra shown have then subsequently been broadened using the arctangent convolutional model to allow comparison.

This copy of the ESI replaces the previous version published on 08 April 2022

Figure S5: Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₃-edge XANES spectra in a) $C_{27}H_{26}As_2PtS_2$ (CCSD code: CATSOG), b) $C_{26}H_{24}Cl_2P_2Pt$ (CCSD code: DE-BXUD), c) $C_{31}H_{25}CINPPt$ (CCSD code: ZUJPEB), d) $C_6H_{16}Cl_2N_2O_4Pt$ (CCSD code: MIPDOG), e) $C_{10}H_{14}Cl_2O_4Pt$ (CCSD code: NAMLIW), and f) $C_{14}H_{12}F_{14}Pt$ (CCSD code: TATRUC). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the arctangent convolutional model.

Figure S6: Examples of theoretical target (dashed line) and DNN-predicted (solid line) Pt L₃-edge XANES spectra in a) $C_{31}H_{27}Cl_2NP_2Pt$ (CCSD code: BATNOA), b) $C_{25}H_{23}NO_2Pt$ (CCSD code: MIKFAQ), c) $C_{45}H_{34}Cl_2O_2P_2Pt$ (CCSD code: MUMGEG), d) $C_6H_{10}Cl_2N_2Pt$ (CCSD code: TECWAA), e) $C_6H_6N_4Pt$ (CCSD code: TEFPOK), and f) $C_{14}H_{10}CIN_3Pt$ (CCSD code: TELQEI). The XANES spectra in the upper and lower three panels were drawn from the 1st and 99th centiles, respectively, where DNN estimations are ranked by MSE. In this Figure, the XANESNET model was developed based upon input data which was broadened using the fixed-width Lorentzian (FWHM = 0.5 eV) convolutional model. The spectra shown have then subsequently been broadened using the arctangent convolutional model to allow comparison.

Figure S7: Histogram of the MSEs achieved on 530 held-out DNN-predicted Pt a) L_2 - and c) L_3 -edge XANES spectra after arctangent convolution; average arctangent-broadened Pt b) L_2 - and d) L_3 -edge XANES spectrum (solid line) and bar chart of the average MSE point-by-point as a function of energy.

Figure S8: Second derivatives of the normalised DNN-predicted Pt L₃-edge XANES spectra of a) $[Pt(PH_3)_2(\eta^2-C_2H_4)]$ and b) $[Pt(PH_3)_2(\eta^2-C_2(CN)_4)]$.

Figure S9: Histogram of atom types and their respective interatomic distances from the Pt X-ray absorption site; data are for the reference (tmQM) dataset.

Figure S10: Comparison of the a) DNN-predicted and b) theoretical XANES spectra of $[Pt(ppy)(\mu t^{t}Bu_{2}pz)]_{2}$ with (solid red line) and without (solid black line) the second Pt atom.