Anharmonic IR spectra of solvated ammonium and aminium

ions: Resemblance between water and bisulfate solvations

Chih-Kai Lin,^{a,*} and Jer-Lai Kuo^{b,c,d,*}

^a Department of Chemistry, National Taiwan University, Taipei, 10617, ROC.

^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, ROC.

^c Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.

^d International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC.

e-mail: ethenel@gmail.com (CKL), jlkuo@pub.iams.sinica.edu.tw (JLK)

Electronic Supplementary Information

This supporting information gives the Cartesian coordinates of optimized geometries, calculated anharmonic bands and assignments, and anharmonic coupling constants of clusters composed of ammonium/aminium solvated by either water or bisulfate investigated in this work.

Table S1. Cartesian coordinates of clusters optimized at the MP2/aug-cc-pVDZ level.

$NH_4^+(H_2O)_2$			
Ν	-0.00881807	1.06215806	0.00000000
н	0.85639895	0.47373110	0.00000000
н	-0.01253205	1.66035810	-0.82974909
Н	-0.86479005	0.45966203	0.00000000
н	-0.01253205	1.66035810	0.82974909
0	2.26732499	-0.51414085	0.00000000
Н	2.78865896	-0.79026787	0.76684094
Н	2.78865896	-0.79026787	-0.76684094
0	-2.26617001	-0.52995902	0.00000000
Н	-2.29383398	-1.49696402	0.00000000
Н	-3.19294502	-0.25226905	0.00000000
CH ₃ NH ₃ ⁺ (H ₂ O) ₂			
Ν	0.00402013	0.47654098	0.53036787
Н	-0.85128185	-0.08020408	0.32305395
Н	-0.00713383	0.70119305	1.52913785
Н	0.84435615	-0.10961198	0.34176486
С	0.03670001	1.72270593	-0.30089021
н	0.05748597	1.42749287	-1.35586820

н	-0.85940502	2.31631889	-0.08834220
н	0.93900399	2.29272300	-0.05359430
0	-2.33436382	-0.93096120	-0.09822492
н	-2.95711987	-0.74894228	-0.81580390
н	-2.73713275	-1.65748819	0.39785215
0	2.30535618	-0.96838092	-0.12014116
н	2.35339520	-1.76733095	-0.66364012
н	3.20155219	-0.85143584	0.22513478
(CH ₃) ₂ NH ₂ ⁺ (H ₂	O) ₂		
N	0.0000000	0.0000000	0.33627906
н	-0.84051974	0.01246488	-0.27348194
н	0.84051974	-0.01246488	-0.27348194
с	-0.02283574	-1.24551768	1.16002006
н	-0.93006131	-1.24356077	1.77655806
н	-0.02523530	-2.11398862	0.49000906
н	0.86828033	-1.26235578	1.79987706
С	0.02283574	1.24551768	1.16002006
н	0.02523530	2.11398862	0.49000906
н	-0.86828033	1.26235578	1.79987706
н	0.93006131	1.24356077	1.77655806
0	-2.40667401	-0.00450640	-1.12914294
н	-2.64414620	-0.56324013	-1.88243794
н	-3.16554531	0.58444462	-1.01447794
0	2.40667401	0.00450640	-1.12914294
н	3.16554531	-0.58444462	-1.01447794
н	2.64414620	0.56324013	-1.88243794
(NH4 ⁺)3(HSO4 ⁻)2			
Ν	-2.37171314	0.05214604	-1.35000896
н	-1.56080336	-0.59757226	-1.48398096
н	-2.12242763	0.69257217	-0.56215196
н	-2.52120521	0.60273675	-2.19751396
н	-3.21136238	-0.48415883	-1.12528496
Ν	2.37171314	-0.05214604	-1.35000896
н	2.12242763	-0.69257217	-0.56215196
н	1.56080336	0.59757226	-1.48398096
н	3.21136238	0.48415883	-1.12528496
н	2.52120521	-0.60273675	-2.19751396
Ν	0.00000000	0.00000000	2.72506904
н	-0.52453758	-0.66045210	2.10217904
н	0.52453758	0.66045210	2.10217904

Н	0.65190571	-0.52551348	3.30960304
Н	-0.65190571	0.52551348	3.30960304
S	-0.01112731	-2.06202598	-0.00299296
0	-0.14016566	-1.58344469	-1.42339896
0	1.30889341	-1.69148970	0.63839204
0	-1.18499227	-1.68266302	0.87470404
0	-0.03890578	-3.69040079	-0.18716396
Н	0.04079284	-4.09541476	0.69709304
S	0.01112731	2.06202598	-0.00299296
0	-1.30889341	1.69148970	0.63839204
0	0.14016566	1.58344469	-1.42339896
0	1.18499227	1.68266302	0.87470404
0	0.03890578	3.69040079	-0.18716396
Н	-0.04079284	4.09541476	0.69709304

(CH₃NH₃⁺)₃(HSO₄⁻)₂

Ν	-0.09483276	-2.04724491	1.81615047
Н	-0.69042495	-1.19201105	1.81201494
Н	0.53849431	-1.94508916	0.99444236
Н	-0.71268655	-2.84421834	1.64428576
С	0.68097714	-2.18571156	3.08277979
Н	1.29526036	-3.09187751	3.02990640
Н	-0.01667493	-2.24912128	3.92570582
Н	1.31839893	-1.29991025	3.17594934
Ν	-0.20527674	2.62634735	0.80973147
Н	-0.82977056	2.21518397	0.08554211
Н	0.42336541	1.84661300	1.10437587
Н	-0.79518388	2.87027858	1.60920699
С	0.57706905	3.78767265	0.29665557
Н	1.21715287	4.16986718	1.10010699
Н	-0.11444210	4.56816592	-0.04083484
Н	1.19126622	3.42835737	-0.53614075
Ν	-0.18736262	-0.57206559	-2.66729606
Н	-0.79616261	-0.97213145	-1.92036644
Н	0.48976118	0.05045842	-2.17212805
Н	-0.78258270	0.01877727	-3.25277713
С	0.51340371	-1.63129976	-3.44723818
Н	1.14349468	-1.15942991	-4.21011092
Н	-0.23033009	-2.28156074	-3.92214215
Н	1.13034577	-2.20270141	-2.74536114
S	-2.18573804	-0.01152043	0.03799577

0	-1.69943625	0.22883308	1.44029241
0	-1.83579420	1.10394501	-0.92353810
0	-1.80363567	-1.36818429	-0.51567087
0	-3.81654106	-0.00415047	0.23526858
Н	-4.22320893	-0.16060506	-0.63760820
S	1.96006296	0.01683544	-0.01669684
0	1.59689433	-1.41647719	-0.33666743
0	1.48154771	0.46896564	1.33487534
0	1.59013486	0.95518043	-1.14459248
0	3.59226792	0.08792312	0.16009221
Н	3.99483308	-0.17559423	-0.68861129

 $((CH_3)_2NH_2^+)_3(HSO_4^-)_2$

Ν	2.39602719	-0.48490686	-1.38701208
Н	1.70846062	0.29497189	-1.46508808
Н	1.98741581	-1.11285526	-0.66411608
С	2.48399480	-1.20976299	-2.68452708
Н	3.17777630	-2.05292926	-2.57287308
Н	2.85569018	-0.51753719	-3.45091708
Н	1.48281111	-1.57332246	-2.94200908
С	3.70024296	0.05322692	-0.91174408
Н	3.52880338	0.58265087	0.03248392
Н	4.09189550	0.74673140	-1.66697308
Н	4.39866903	-0.78173450	-0.77127608
Ν	-2.39602719	0.48490686	-1.38701208
Н	-1.98741581	1.11285526	-0.66411608
Н	-1.70846062	-0.29497189	-1.46508808
С	-3.70024296	-0.05322692	-0.91174408
Н	-4.09189550	-0.74673140	-1.66697308
Н	-4.39866903	0.78173450	-0.77127608
Н	-3.52880338	-0.58265087	0.03248392
С	-2.48399480	1.20976299	-2.68452708
Н	-1.48281111	1.57332246	-2.94200908
Н	-3.17777630	2.05292926	-2.57287308
Н	-2.85569018	0.51753719	-3.45091708
Ν	0.0000000	0.0000000	2.80507592
Н	0.54123970	0.62278647	2.16669392
Н	-0.54123970	-0.62278647	2.16669392
С	0.94324669	-0.81365947	3.61908692
н	0.36516784	-1.49275581	4.25919392
н	1.54788400	-0.13997233	4.23989992

Н	1.57879300	-1.38735594	2.93512692
С	-0.94324669	0.81365947	3.61908692
Н	-1.57879300	1.38735594	2.93512692
Н	-0.36516784	1.49275581	4.25919392
Н	-1.54788400	0.13997233	4.23989992
S	0.36912814	2.08076492	-0.00560808
0	0.48318900	1.55269428	-1.40814208
0	-1.02551198	1.97392736	0.56965792
0	1.41436877	1.54168105	0.94545192
0	0.69152085	3.68087187	-0.22078408
Н	0.64897208	4.10923441	0.65453792
S	-0.36912814	-2.08076492	-0.00560808
0	1.02551198	-1.97392736	0.56965792
0	-0.48318900	-1.55269428	-1.40814208
0	-1.41436877	-1.54168105	0.94545192
0	-0.69152085	-3.68087187	-0.22078408
Н	-0.64897208	-4.10923441	0.65453792

	$NH_4^+(H_2O)_2$		($(NH_4^+)_3(HSO_4^-)_2$	
wavenumber	IR intensity	assignment	wavenumber	IR intensity	assignment
2790	483	FR_{uu}/S_B	2745	335	FR_{uu}/S_B
2816	341	FR_{uu}/S_B	2830	533	S_B/FR_{uu}
2851	411	$S_{\rm B}/FR_{\rm uu}$	2878	266	FR_{uu}/S_B
2901	324	FR_{uu}/S_B	2891	487	S_B/FR_{uu}
2927	583	S_{B}/FR_{uu}	3008	111	FR_{uu}
3020	72	$\mathrm{FR}_{\mathrm{uu}}$	3054	17	FR_{ux}
3113	22	FR_{ux}	3188	11	FR_{ux}
3212	27	FR_{ux}	3333	88	S_{FS}/FR_{xx}
3327	109	\mathbf{S}_{FS}	3350	41	FR_{xx}/S_{FS}
3377	100	\mathbf{S}_{FA}	3409	80	\mathbf{S}_{FA}
	$MA-H^+(H_2O)_2$		(N	MA-H ⁺) ₃ (HSO ₄ ⁻) ₂	2
wavenumber	IR intensity	assignment	wavenumber	IR intensity	assignmen
2482	11	FR _{ru}	2460	18	$\mathrm{FR}_{\mathrm{ru}}$
2522	42	FR_{ru}	2487	34	$\mathrm{FR}_{\mathrm{ru}}$
2573	8	FR _{rx}	2575	9	FR _{rx}
2637	22	FR _{rx}	2608	8	FR _{rx}
2833	102	$\mathrm{FR}_{\mathrm{ru}}$	2807	76	$\mathrm{FR}_{\mathrm{ru}}$
2846	51	$\mathrm{FR}_{\mathrm{ru}}$	2824	29	$\mathrm{FR}_{\mathrm{ru}}$
2928	116	FR _{rx}	2886	64	FR _{rx}
2938	94	FR _{rx}	2892	27	FR _{rx}
2953	62	FR _{rx}	2917	47	FR _{rx}
2956	47	FR _{rx}	2926	99	FR _{rx}
2996	334	\mathbf{S}_{BS}	2972	533	\mathbf{S}_{BS}
3057	750	\mathbf{S}_{BA}	3027	406	\mathbf{S}_{BA}
3123	89	$\mathrm{FR}_{\mathrm{uu}}$	3114	125	$\mathrm{FR}_{\mathrm{uu}}$
3196	24	FR_{ux}	3164	13	FR _{ux}
3216	10	FR_{ux}	3198	8	FR_{ux}
3285	17	FR _{xx}	3233	14	FR _{xx}
3308	5	FR _{xx}	3269	2	FR _{xx}
3332	6	FR _{xx}	3305	8	FR _{xx}
3344	66	\mathbf{S}_{F}	3356	72	S_{F}

Table S2. Calculated peak positions (in cm⁻¹), IR intensities (in km mol⁻¹), and assignments of absorption peaks of ammonium/aminium ions solvated by water and bisulfate.^a

D	MA-H ⁺ (H ₂ O)	2	(DN	$(DMA-H^{+})_{3}(HSO_{4}^{-})_{2}$							
wavenumber	IR intensity	assignment	wavenumber	IR intensity	assignment						
2512	55	FR _{rx}	2493	48	FR _{rx}						
2543	8	FR _{rr}	2521	16	FR_{rr}						
2580	7	FR _{rr}	2590	8	FR_{rr}						
2900	194	S_{B}/FR_{rx}	2866	166	FR_{rr}/S_B						
2920	114	FR_{rr}/S_B	2881	211	FR_{rr}/S_B						
2964	38	FR _{rr} /FR _{rx}	2943	24	FR _{rr} /FR _{rx}						
2992	73	FR_{rr}	2972	284	FR_{rr}						
3125	95	FR_{rx}/S_B	3085	388	S_B/FR_{rx}						
3135	210	S _B /FR _{rx}	3096	401	S_{B}/FR_{rx}						
3145	466	S _B /FR _{rx}	3108	22	FR _{rx}						
3175	209	FR_{rx}/S_B	3165	8	FR _{rx}						
3310	12	FR _{xx}	3313	15	FR _{xx}						

Table S2 (continued)

^a For the assignments, S_B and S_F denote H-bonded and free NH stretching bands, respectively; the additional subscripts S/A indicate symmetric/antisymmetric stretching modes. FR denotes the Fermi resonance band, and the following subscripts indicate the generalized bending overtone and combination tones that are involved: u, umbrella; x, scissoring; r, rocking (wagging/twisting).

Table S3. The original frequencies (in cm⁻¹) of NH stretching fundamentals and bending overtones/combination tones, the coupling constants (in cm⁻¹) between them, and the original IR intensities of stretching fundamentals (in km mol⁻¹) that involved in Fermi resonance in the clusters of ammonium/aminium cations solvated by water molecules/bisulfate anions.^a

NILL +	(Π, O)			u	ıu					υ	ıx				XX		original
INП4	(H ₂ O) ₂	2850	2894	2939	2943	2987	3035	3134	3140	3180	3184	3228	3231	3421	3428	3431	IR int.
s _{b,sym}	2882	2.0	22.6	-29.5	0.0	0.0	37.0	10.2	0.4	-24.2	-1.0	0.3	-8.6	-8.0	0.4	-0.3	912
s _{b,asym}	2884	20.8	41.5	-6.8	0.0	0.1	-24.7	20.2	0.8	0.6	0.1	1.1	-29.7	2.0	0.8	-7.9	1322
s _{f,sym}	3316	-48.2	4.9	-32.2	-0.1	0.0	-7.2	8.5	0.3	31.6	1.3	0.2	-3.4	-4.8	-0.1	2.7	126
S _{f,asym}	3374	0.0	0.0	0.0	14.8	42.4	0.0	1.3	-31.7	-0.4	10.3	13.8	0.6	0.0	0.4	0.0	107
								!									1
(\mathbf{NH}^+)	HSO).			u	u					u	Х		original				
(1114)3(11504)2	2772	2838	2897	2906	2965	3024	3062	3085	3130	3153	3189	3211	3358	3382	3402	IR int.
s _{b,sym}	2840	1.5	44.5	3.1	16.4	-5.1	25.9	-11.1	-11.1	7.7	11.0	10.3	-17.9	-1.4	0.4	-4.7	942
S _{b,asym}	2893	-8.2	-36.0	1.4	15.4	2.5	35.4	10.7	9.6	11.1	12.0	-9.4	14.7	-3.3	1.5	-5.6	813
$\mathbf{s}_{\mathrm{f},\mathrm{sym}}$	3331	55.4	-1.9	-0.2	-33.4	-1.5	7.5	0.9	2.2	23.1	19.5	0.2	0.6	7.6	-1.0	4.8	150

Table S3 (continued)

MA II+	(II O)		rr		ru					rx								ux		xx			original
МА-п	(П2О)2	2632	2645	2660	2556	2595	2900	2915	2625	2665	2973	2987	2647	2690	2996	3011	3161	3235	3258	3312	3337	3359	IR int.
S _{b,sym}	2989	-55.8	19.3	6.0	35.9	-33.0	7.7	-26.2	-2.6	2.2	-19.3	3.4	17.1	-15.1	-6.9	-13.7	11.3	38.3	4.2	-1.6	-9.4	0.3	625
$\mathbf{s}_{b,asym}$	2999	-15.8	3.3	-0.5	9.5	7.6	-56.7	14.5	50.8	-34.1	-4.9	-28.6	8.5	3.3	39.3	-4.3	-40.5	11.1	17.4	-9.5	-13.9	-9.3	1186
$\mathbf{S}_{\mathbf{f}}$	3318	21.0	-30.7	16.3	-16.7	-53.8	-5.9	-43.0	12.9	-10.9	-28.3	-3.6	31.8	-28.2	4.6	-24.5	-1.4	-11.5	1.1	-5.9	12.5	-8.9	85
		-																-					-
		rr ru									r	х				uu	ux		XX			original	
(MA-n)3	3(1504)2	2600	2600	2607	2548	2584	2883	2886	2593	2629	2932	2936	2627	2666	2968	2972	3160	3210	3246	3264	3302	3335	IR int.

s _{b,sym}	2935	7.2	11.7	-20.4	-28.7	-45.2	-41.0	8.1	23.5	22.3	23.1	-11.0	-22.2	21.0	12.4	25.3	25.4	-9.5	5.2	-0.3	6.2	-18.8	848
S _{b,asym}	3004	-3.6	-12.7	21.2	20.0	-50.0	-33.5	-26.0	33.7	-9.2	3.8	-28.1	0.9	35.9	30.4	6.9	-28.0	-15.4	11.4	15.3	8.4	5.2	688
$\mathbf{s}_{\mathbf{f}}$	3331	1.4	-7.4	-34.5	61.6	-2.4	13.6	-45.6	14.7	-34.4	-27.5	-20.9	31.1	12.6	19.5	-19.4	11.0	2.5	7.8	-15.0	12.2	2.3	87

DMA-H ⁺ (H ₂ O) ₂		rr _N /rt/rw								tt/tw/ww			rx						xx	original			
		2471	2509	2520	2577	2597	2618	2626	2646	2726	2829	2940	2976	3051	2544	2719	2743	2841	2952	3094	3195	3315	IR int.
s _{b,sym}	2954	0.9	6.2	-9.7	14.7	9.1	0.0	43.7	0.2	0.3	0.1	-0.1	-13.8	-0.6	-58.6	-1.4	4.5	-1.9	-36.6	-2.5	10.2	18.4	968
S _{b,asym}	3281	-1.3	55.9	-17.9	23.9	-19.4	0.1	-5.7	1.3	0.5	0.0	-0.4	35.6	0.2	65.3	1.0	-1.5	-2.3	42.1	2.2	-2.9	9.6	73
		_																					
(DMA-H ⁺) ₃ (HSO ₄ ⁻)		rr _N /rt/rw									tt/tw/ww				rx					XX	original		
		2558	2564	2567	2626	2628	2663	2725	2759	2774	2820	2964	3028	3092	2607	2762	2763	2864	2964	3158	3220	3357	IR int.
s _{b,sym}	2980	-17.5	15.0	-26.2	-5.6	40.4	-0.4	0.1	2.5	1.4	0.0	27.5	56.4	-39.2	-68.5	1.2	3.7	2.4	-47.2	-3.7	7.4	12.0	833
s _{b,asym}	3008	21.5	19.5	29.4	30.2	22.3	-0.2	-0.4	1.8	1.1	-2.2	-36.5	50.6	43.5	-59.6	2.9	0.0	-3.0	-41.0	3.2	5.5	-14.0	799

^a Notations to vibrational modes: s_b, H-bonded NH stretching; s_f, free NH stretching; u, NH₃ umbrella; x, NH₂ scissoring; r, CH₃–NH rocking; r_N, NH₂ rocking; t, NH₂ twisting; w, NH₂ wagging.

Table S4. The original frequencies (in cm⁻¹) of the four NH stretching fundamentals of the ammonium ion and the coupling constants (in cm⁻¹) between the NH stretching modes of two ammonium ions in the $(NH_4^+)_3(HSO_4^-)_2$ cluster. Note that only NH stretching modes are included in this tentative calculation.^a

N	H_4^+ ion 2	S _{b,sym}	S _{b,asym}	s _{f,sym}	S _{f,asym}		
$\rm NH_4^+$ ion 1		2894	2944	3377	3451		
S _{b,sym}	2894	-15.9	9.2	0.7	0.1		
S _{b,asym}	2944	-9.2	2.4	-1.1	0.4		
s _{f,sym}	3377	-0.7	-1.1	-0.6	0.1		
S _{f,asym}	3451	-0.1	0.4	0.1	0.0		

^a Notations to vibrational modes: s_b, H-bonded NH stretching; s_f, free NH stretching.

Figure S1. An example diagram showing the similarity between the PES and wavefunctions of $NH_4^+...(H_2O)_2$ and $(NH_4^+)_3(HSO_4^-)_2$ clusters. The PES is a low-dimensional cut regarding the H-bonded NH symmetric stretching mode (vertical axis) and one NH₃ umbrella mode (horizontal axis), and the color map indicates the potential energy. The wavefunction corresponds to the overtone state of the umbrella mode, presenting distortion due to the anharmonic coupling with the stretching mode.