## **Electronic Supplementary Information**

## Structural dynamics of Ru cluster during nitrogen dissociation

## in ammonia synthesis

Qi-Yuan Fan, <sup>1, 2</sup> Jing-Li Liu, <sup>1, 2</sup> Fu-Qiang Gong, <sup>1</sup> Ye Wang, <sup>1</sup> and Jun Cheng <sup>1\*</sup>

<sup>1</sup> State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China

<sup>2</sup> These authors contributed equally

E-mail: chengjun@xmu.edu.cn

## Contents

| Fig. S1            | Kinetic energy partitioning                                       | S3      |
|--------------------|-------------------------------------------------------------------|---------|
| Fig. S2<br>methods | Probability distributions and mean forces obtained by different s | ampling |
| Fig. S3            | PMF curves at different temperatures                              | \$5     |
| Fig. S4            | Average forces at different N-N bond lengths                      | S6      |
| Fig. S5            | Hysteresis of mean force                                          | S7      |
| Fig. S6            | Specific heat capacity curves                                     |         |



Fig. S1. Kinetic energy partitioning for the Ru-N2 system thermostated by Nosé-Hoover chain at523K.TheN-Nbondlengthiscontrolledto1.84Å.



**Fig. S2.** (a) Total energy probability distributions P (E, T) and (b) the time accumulative averages of mean forces obtained by NVT combined with Nosé–Hoover chain thermostat with a chain length of three (blue line), the Langevin dynamics (red line), and mixed NVE/NVT sampling (green line) at 523 K. The N-N bond length is controlled to 1.84 Å. The probability distributions and mean forces between NVT and mixed NVE/NVT sampling are very similar, indicating that the interference issue due to the coupling the internal degrees of freedom of the cluster with a thermostat in this work is insignificant.



**Fig. S3.** Calculated average forces for  $N_2$  dissociation on  $Ru_{19}$  cluster as a function of N-N bond length at different temperatures (unit: K).



**Fig. S4.** (a) Time accumulative averages of the forces at the N-N bond length varying from 1.24 Å to 1.84 Å and (b) from 2.04 Å to 3.24 Å at 423 K calculated using AIMD. The inset values are the corresponding N-N bond lengths given in Å.



**Fig. S5.** Time accumulative averages of mean forces at the N-N bond length of 1.84 Å calculated using different initial structures at 523 K. The inserts are the snapshots of initial structures. I, the N-N bond length is 1.44 Å. II, the N-N bond length is 2.04 Å. The silver and blue balls represent Ru and N atoms.



Fig. S6. Specific heat capacity curves of initial (IS), transition (TS), and finals states (FS) of the  $N_2$  dissociation on  $Ru_{19}$  cluster.