Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

Pressure dependence of superconductivity in alkali-Bi compounds KBi_2 and RbBi_2

Huan Li¹, Mitsuki Ikeda¹, Ai Suzuki¹, Tomoya Taguchi¹, Yanting Zhang¹, Hidenori Goto¹, Ritsuko Eguchi¹, Yen-Fa Liao², Hirofumi Ishii², and Yoshihiro Kubozono^{1*}

¹Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan

 2 National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

 $\textbf{Table S1.} \ \, \text{Lattice constants of KBi}_2 \ \, \text{determined at 0, 2.42, 6.41 and 20.1 GPa}.$

p (GPa)	Phase	a (Å)	b (Å)	c (Å)	Space group	R _p (%)	wR _P (%)
0	∫ KBi₂	9.56415(6)			<i>F</i> d ³ m	2.85	4.59
	Bi-I	4.5671(1)		11.935(1)	R ³ m	2.63	4.59
2.42	KBi ₂	9.40401(9)			<i>F</i> d ³ m	1.08	1.75
	Bi-I	4.5108(1)		11.5629(7)	R ³ m	1.00	
6.41	[KBi ₂	9.1811(3)			<i>F</i> d ³ m		
	Bi-III(1)	8.586(1)		3.1977(7)	I4/mmm	1.57	3.14
	Bi-III(2)	8.594(1)		4.1986(9)	I4/mcm		
20.1	KBi ₂	8.812(2)			<i>F</i> d ³ m		
	. KBi	5.156(1)	14.570(3)	5.3782(2)	Cm	1.30	2.42
	Bi-V	3.71771(6)			<i>I</i> m ³ m		

 $\textbf{Table S2.} \ \, \text{Lattice constants of RbBi}_2 \ \, \text{determined at 0, 1.58, 8.36 and 17.0 GPa}.$

p (GPa)	Phase	a (Å)	c (Å)	Space group	R _p (%)	wR _P (%)
0	RbBi ₂	9.65694(8)		<i>F</i> d ³ m	2.10	2.20
U	l Bi-I	4.56665(8)	11.9144(4)	R ³ m	2.19	3.28
1 50	RbBi ₂ 9.5327(1) Bi-I 4.5388(1)			<i>F</i> d ³ m	1 05	1 70
1.58	Bi-I	4.5388(1)	11.6822 (8)	R ³ m	1.05	1.78
8.36	RbBi ₂	9.1402(2)		<i>F</i> d ³ m		
	Bi-III(2)	8.5580(2)	4.1715(5)	I4/mcm	0.98	1.56
	Bi-V	8.5580(2) 3.83122(3)		<i>I</i> m ³ m		
17.0	ſ RbBi₂	8.8393(6)		<i>F</i> d ³ m	1 50	2.56
17.0	Bi-V	3.72861(3)		<i>I</i> m ³ m	1.56	2.56

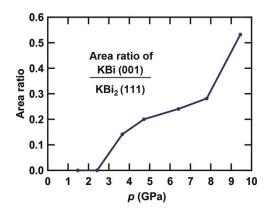


Figure S1. Pressure dependence of the area ratio of 001 peak of KBi with respect to 111 peak of KBi_2 . The area ratio cannot be evaluated from complete disappearance of 111 peak of KBi_2 above 9.45 GPa,

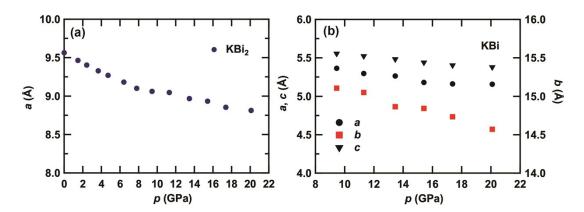


Figure S2. (a) a - p plot of KBi₂. (b) Plots of a - p, b - p and c - p of KBi; a, b and c refer to the black circle, red square and black triangle, respectively.

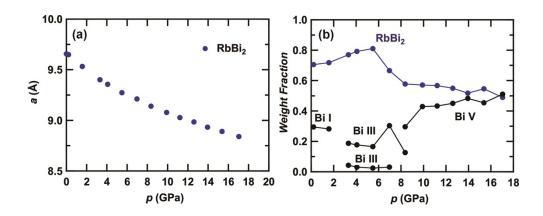


Figure S3. (a) a - p plot of RbBi₂. (b) Pressure dependence of weight fraction for RbBi₂ and Bi. The weight fraction is evaluated from the Rietveld refinement for pressure-dependent XRD patterns (not shown).

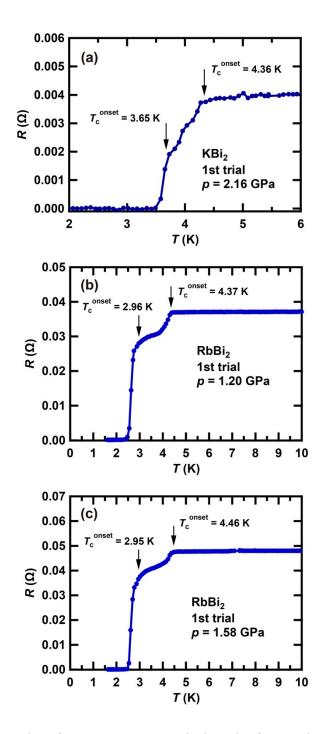


Figure S4. (a) R - T plot of KBi_2 at 2.16 GPa which is the first trial of measurement of R against temperature. R - T plots of $RbBi_2$ at (b) 1.20 GPa and (c) 1.58 GPa which are the first trial of measurement of R against temperature.

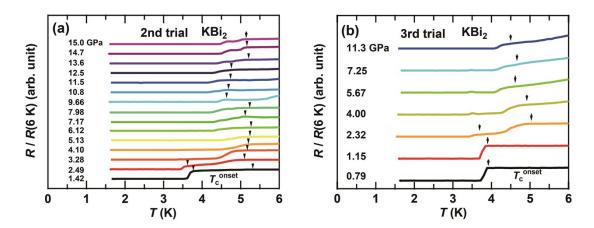


Figure S5. R / R(6 K) – T plots of KBi $_2$ obtained from (a) the second and (b) the third trials of measurement of R against temperature. The different butch of sample was employed in each trial.

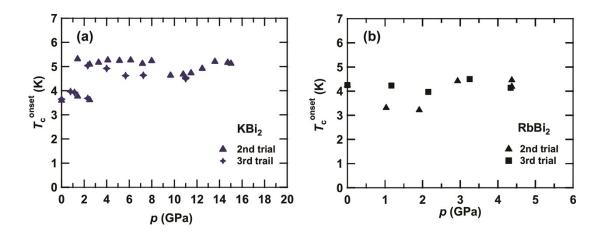


Figure S6. $T_c^{\text{onset}} - p$ plot of (a) KBi₂ and (b) RbBi₂; In each trial, different butch of sample is employed. The plots are obtained from the second and third trials of measurement of R against temperature for KBi₂ and RbBi₂ at different pressures.