Supplementary Information of

Exoergic pathways triggered by 0/H radicals in different metallic carbohydrazide

 perchlorates ($\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}$ and Cd^{2+})Xiaohui He , \ddagger^{a} Panpan Wu, \ddagger^{a} Xin Huang, ${ }^{\text {a }}$ Chaohua Dai, ${ }^{\text {a }}$ Changshun Li, ${ }^{\text {a }}$ Longjiu Cheng, ${ }^{\text {a }}$ Tonglai Zhang, ${ }^{*}$ Jianguo Zhang ${ }^{*}$ c and Kun Wang *a,b
${ }^{a}$ Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
${ }^{b}$ Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Hefei, Anhui 230601, P. R. China
${ }^{\text {c S State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing } 100081 \text { P. R. China } a n d r l}$

[^0]* Corresponding authors: Kun Wang, Tel \& Fax: +8655163861279. E-mail: wangkun@ahu.edu.cn; Tonglai Zhang, E-mail: ztlbit@bit.edu.cn; Jianguo Zhang, E-mail:

Contents

Fig. S1 ~ S5. The convergence curves of the temperature of ions ($\mathrm{T}_{\text {ions }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies ($\mathrm{e}_{\text {tot }}$) of $\mathrm{MCPs}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$, and $\left.\mathrm{Cd}^{2+}\right)$

Fig. S6~Fig. S10. The relationship between the total energy and the simulation time/temperature of MCPs $\left(\mathrm{M}^{2+}=\right.$

Fig. S11. The molecular structures, parameters and Wiberg bond index of coordinative bonds (WBI) of (a)-(e) $\left[\mathrm{M}(\mathrm{CHZ})_{2}\right]^{2+}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right)$ under the level of m062x/def2tzvp $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot \bar{\cdots}$

Fig. S12 The optimized crystal structures of $\mathrm{CHZ},\left[\mathrm{CHZ}^{2+}\left(\mathrm{ClO}_{4}^{-}\right)_{2}\right]$ and six $\mathrm{MCPs}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right)$.8

Fig. S13 ~ Fig. S18. The density of states (DOS) and partial density of state (pDOS) of the six MCP $\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}\right.$, Co^{2+}, $\mathrm{Ni}^{2+}, \quad \mathrm{Zn}^{2+}$ and
$\left.\mathrm{Cd}^{2+}\right)$ 9-14

Fig. S19. Molecular structure, Hirshfeld surfaces and fingerprint plot for understasnding the intermolecular interactions among $\mathrm{CHZ}, \mathrm{M}^{2+}$ and ClO_{4}^{-}15

Fig. S20~S24. The snapshots of the typical products of of $\mathrm{MCPs}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$, and $\left.\mathrm{Cd}^{2+}\right) \quad 16-19$

Scheme S3~Scheme S7. The decomposition pathways of MCPs ($\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$ and Cd^{2+}) $\cdots \cdots \cdot \cdot \cdot 22-26$
Table S1~Table S5. The Cartesian coordinates of $\left[\mathrm{M}(\mathrm{CHZ})_{2}\right]^{2+}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right)$ of the optimized structure under the level of m062x/deftzvp. 27-31

Table S7. The temperature of ions ($\mathrm{T}_{\text {ion }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies ($\mathrm{e}_{\text {tot }}$) of MCPs $\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$ and Cd^{2+}) 33

To satisfy the requirements of the simulation, we test the virtual mass of electronics and the cut off energy to make sure the systems are adiabatic with appropriate force fields for all the atoms before increasing the temperature. The average value of the temperature of ions $\left(T_{\text {ion }}\right)$, kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies $\left(\mathrm{e}_{\text {tot }}\right)$ in a 2000-step simulation without any thermostat (Table S10 ~ S14).

Fig. S1. The convergence curves of the temperature of ions ($\mathrm{T}_{\text {ions }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies ($\mathrm{e}_{\text {tot }}$) of MnCP

Fig. S2. The convergence curves of the temperature of ions ($\mathrm{T}_{\text {ions }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies $\left(\mathrm{e}_{\text {tot }}\right)$ of FeCP

Fig. S3. The convergence curves of the temperature of ions ($\mathrm{T}_{\text {ions }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies $\left(\mathrm{e}_{\text {tot }}\right)$ of CoCP

Fig. S4. The convergence curves of the temperature of ions ($\mathrm{T}_{\text {ions }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies $\left(\mathrm{e}_{\text {tot }}\right)$ of NiCP

Fig. S5. The convergence curves of the temperature of ions ($\mathrm{T}_{\text {ions }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies ($\mathrm{e}_{\text {tot }}$) of FeCP

Fig. S6. The relationship between the total energy and the simulation time/temperature of MnCP

Fig. S7. The relationship between the total energy and the simulation time/temperature of FeCP

Fig. S8. The relationship between the total energy and the simulation time/temperature of CoCP

Fig. S9. The relationship between the total energy and the simulation time/temperature of NiCP

Fig. S10. The relationship between the total energy and the simulation time/temperature of CdCP

Fig. S11 The molecular structures, parameters and Wiberg bond index of coordinative bonds (WBI) of (a)-(e) $\left[\mathrm{M}(\mathrm{CHZ})_{2}\right]^{2+}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right)$ under the level of m062x/def2tzvp

Fig. S12 The optimized crystal structures of $\mathrm{CHZ},\left[\mathrm{CHZ}^{2+}\left(\mathrm{ClO}_{4}^{-}\right)_{2}\right]$ and six $\mathrm{MCPs}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$, and $\left.\mathrm{Cd}^{2+}\right)$

Fig. S13. The density of states (DOS) and partial density of states (pDOS) of MnCP.

Fig. S14. The density of states (DOS) and partial density of states (pDOS) of FeCP.

Fig. S15. The density of states (DOS) and partial density of states (pDOS) of CoCP.

Fig. S16. The density of states (DOS) and partial density of states (pDOS) of NiCP.

Fig. S17. The density of states (DOS) and partial density of states (pDOS) of ZnCP .

Fig. S18. The density of states (DOS) and partial density of states (pDOS) of CdCP.

The intermolecular interactions among $\mathrm{CHZ}, \mathrm{M}^{2+}$ and $\mathrm{ClO}_{4}{ }^{-}$

In order to understand intermolecular interactions among $\mathrm{CHZ}, \mathrm{M}^{2+}$ and ClO_{4}^{-}, we compare the individual molecular CHZ and the ligand CHZ of MCPs (CHZ(M)) in Fig. S9. In the Hirshfeld surfaces of Fig. 2(a), the red dots represent the distance between molecules is less than the van der Waals distance and therefore suggest the presence of strong intermolecular interactions. In the individual molecular CHZ, most of the red dots located along the surface edges of the plate-like Hirshfeld surface are related to the intermolecular $\mathrm{H} \cdots \mathrm{H}$ interactions with the percentage of 50.7%, higher than $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (12.2\%) and $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}$ (14.9\%) in Fig. 2(e). In $\mathrm{CHZ}(\mathrm{M})$, the intermolecular $\mathrm{H} \cdots \mathrm{H}$ interactions decreased drastically, but with obviously increased $\mathrm{O} \cdots \mathrm{H}$ interactions between CHZ and ClO_{4}^{-}.

Fig. S19 Molecular structure and Hirshfeld surfaces of individual molecular (a) CHZ and (b) $\mathrm{CHZ}(\mathrm{M}$); fingerprint plot of (c) CHZ and (d) $\mathrm{CHZ}(\mathrm{M})$; (e) populations of intermolecular interactions of CHZ and $\mathrm{CHZ}(M)$.

Fig. S20. The snapshots of the typical products of MnCP. (a) the formation of NO at 27.11 ps ; (b) the formation of N 2 at 33.89 ps ; (c) the formation of H 2 O at 34.46 ps ; (d) the formation of CO at 34.84 ps . (e) the formation of MnCl_{2} at 35.36 ps ; (f) he formation of CO 2 at 39.46 ps .

Fig. S21. The snapshots of the typical products of FeCP. (a) the formation of N_{2} at 17.47 ps ; (b) the formation of $\mathrm{H}_{2} \mathrm{O}$ at 23.99 ps ; (c) the formation of CO_{2} at 25.17 ps ; (d) the formation of FeCl_{2} at 26.88 ps . (e) the formation of

CO at 34.57 ps ; (f) the formation of H_{2} at 38.08 ps .

Fig. S22. The snapshots of the typical products of CoCP. (a) the formation of $\mathrm{H}_{2} \mathrm{O}$ at 17.62 ps ; (b) the formation of N_{2} at 19.01 ps ; (c) the formation of CO at 22.86 ps ; (d) the formation of CoO at 25.49 ps ; (e) the formation of NH_{3} at 27.41 ps ; (f) the formation of HCl and HClO at 28.00 ps ; (g) the formation of CO_{2} at 32.79 ps .

Fig. S23. The snapshots of the typical products of NiCP. (a) the formation of $\mathrm{H}_{2} \mathrm{O}$ at 16.05 ps ; (b) the formation of H_{2} at 20.08 ps ; (c) the formation of CO at 24.08 ps ; (d) the formation of NiCl_{2} at 25.40 ps ; (e) the formation of CO_{2} at 25.81 ps ; (f) the formation of and N_{2} at 25.81 ps ; (g) the formation of $\mathrm{N}_{2} \mathrm{O}$ at 26.31 ps .

Fig. S24. The snapshots of the typical products of CdCP. (a) the formation of $\mathrm{H}_{2} \mathrm{O}$ at 26.30 ps ; (b) the formation of HCl at 26.86 ps ; (c) the formation of N_{2} at 27.55 ps ; (d) the formation of H_{2} at 27.55 ps ; (e) the formation of CO_{2} at $27.55 \mathrm{ps} ;(\mathrm{f})$ the formation of and CdO at $33.38 \mathrm{ps} ;(\mathrm{g})$ the formation of CO at $33.83 \mathrm{ps} ;(\mathrm{g})$ the formation of $\mathrm{N}_{2} \mathrm{O}$ at 36.76 ps.

Scheme S1. The decomposition pathways of CHZ

Scheme S2. The decomposition pathways of CHZCP

$$
\mathrm{ClO}_{4}^{\ominus} \xrightarrow{23.50} \mathrm{CIO}_{3}^{\ominus}+\dot{̣} \xrightarrow{27.41} \mathrm{CIO}_{2}^{\ominus}+2 \dot{̣} \quad \mathrm{CIO}_{4}^{\ominus} \xrightarrow{31.62} \mathrm{CIO}_{3}^{\ominus}+\dot{̣}
$$

(1)

(3)

$\mathrm{Mn}(\mathrm{CHZ})_{3} \mathrm{P}_{2} \longrightarrow \mathrm{MnCl}_{2}+2 \mathrm{NO}+5 \mathrm{~N}_{2}+4 \mathrm{H}_{2}+2 \mathrm{CO}+\mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

Scheme S3. The decomposition pathways of MnCP

$$
\mathrm{COO}_{4}^{\ominus} \xrightarrow{21.08} \mathrm{cIO}_{3}^{\ominus}+\dot{\mathrm{o}} \xrightarrow{23.04} \mathrm{clO}_{2}^{\ominus}+2 \dot{\longrightarrow} \xrightarrow{23.58} \mathrm{cIO}^{\ominus}+3 \dot{(} \xrightarrow{23.93} \mathrm{cl}+4 \dot{̣}
$$

(2)

(3)

$\mathrm{Fe}(\mathrm{CHZ})_{3} \mathrm{P}_{2} \longrightarrow \mathrm{FeCl}_{2}+6 \mathrm{~N}_{2}+3 \mathrm{H}_{2}+\mathrm{CO}+2 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Scheme S4. The decomposition pathways of FeCP

$$
\begin{aligned}
& \mathrm{ClO}_{4}^{\ominus} \xrightarrow{16.90} \mathrm{CIO}_{3}^{\ominus}+\dot{\mathrm{O}} \xrightarrow{19.92} \mathrm{CIO}_{2}^{\ominus}+2 \dot{\mathrm{o}} \xrightarrow{20.02} \mathrm{CIO}^{\ominus}+3 \dot{\mathrm{o}} \xrightarrow{21.07} \mathrm{Cl}^{\ominus}+4 \dot{\underline{o}} \xrightarrow[\mathrm{H} \cdot]{\mathrm{HCl}}
\end{aligned}
$$

(1)

$\mathrm{Co}(\mathrm{CHZ})_{3} \mathrm{P}_{2} \longrightarrow \mathrm{CoO}+\mathrm{N}_{2} \mathrm{H}_{4}+5 \mathrm{~N}_{2}+\mathrm{H}_{2}+2 \mathrm{CO}+\mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}+\mathrm{HClO}$

Scheme S5. The decomposition pathways of CoCP

(1)

(2)

(3)

$\mathrm{Ni}(\mathrm{CHZ})_{3} \mathrm{P}_{2} \longrightarrow \mathrm{NiCl}_{2}+\mathrm{N}_{2} \mathrm{O}+5 \mathrm{~N}_{2}+3 \mathrm{H}_{2}+2 \mathrm{CO}+\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Scheme S6. The decomposition pathways of NiCP

(2)

$\mathrm{Cd}(\mathrm{CHZ})_{3} \mathrm{P}_{2} \longrightarrow \mathrm{CdO}+\mathrm{N}_{2} \mathrm{O}+5 \mathrm{~N}_{2}+3 \mathrm{H}_{2}+2 \mathrm{CO}+\mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl}$

Scheme S7. The decomposition pathways of CdCP

Table S1~Table S5. The Cartesian coordinates of $\left[\mathrm{M}(\mathrm{CHZ})_{2}\right]^{2+}\left(\mathrm{M}^{2+}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right)$ of the optimized structure under the level of m062x/def2tzvp.

Table S1. The Cartesian coordinates of $\left[\mathrm{Mn}(\mathrm{CHZ})_{2}\right]^{2+}$ of the optimized structure under the level of m062x/deftzvp.

Atom	x	y	z
0	1.007455	-1.530340	0.557955
N	2.004472	-0.321340	-1.633428
N	2.809018	-1.036015	-0.739827
N	3.054265	-2.213680	1.210195
N	4.424325	-2.245236	0.970367
C	2.237923	-1.585012	0.357070
H	3.815935	-1.062590	-0.836487
H	2.317461	0.647278	-1.660463
H	2.105967	-0.715901	-2.564639
H	2.637755	-2.606677	2.044110
H	4.748483	-3.202133	0.885460
H	4.926897	-1.780906	1.718734
N	-1.237270	-2.121181	-1.339918
0	-2.063883	-0.194272	0.310746
N	-1.156433	1.774610	-1.663180
0	0.751077	1.661497	0.198764
C	-2.753035	-1.222267	0.254756
C	0.264678	2.774019	-0.042627
N	0.624212	3.894528	0.596765
N	1.584914	3.836910	1.597271
N	-3.865680	-1.407322	0.976890
N	-4.289851	-0.415245	1.850711
N	-0.673609	2.925394	-1.029444
N	-2.412123	-2.241280	-0.591389
H	-1.201271	3.780859	-1.123054
H	-2.127548	1.614361	-1.400683
H	-1.104068	1.902131	-2.669461
H	0.201834	4.777656	0.342187
H	1.185364	4.109513	2.486943
H	2.368438	4.435232	1.367074
H	-1.449220	-2.257704	-2.324174
H	-0.567168	-2.829347	-1.046228
H	-2.891943	-3.128905	-0.577636
H	-4.391758	-2.266047	0.882142
H	-4.262755	-0.749718	2.806215
H	-5.226555	-0.114311	1.611998
Mn	-0.128165	-0.114372	-0.533282

Table S2. The Cartesian coordinates of $\left[\mathrm{Fe}(\mathrm{CHZ})_{2}\right]^{2+}$ of the optimized structure under the level of m062x/def2tzvp.

Atom	x	y	z
0	0.726109	-1.535697	0.590975
N	1.825407	-0.549930	-1.647181
N	2.533472	-1.387968	-0.779009
N	2.654467	-2.531034	1.204801
N	3.993853	-2.785566	0.926855
C	1.920270	-1.800222	0.357364
H	3.523591	-1.558981	-0.897284
H	2.292485	0.353786	-1.695001
H	1.823125	-0.956529	-2.578694
H	2.210765	-2.826418	2.064518
H	4.160071	-3.783479	0.860368
H	4.587734	-2.389390	1.646967
N	-1.397767	-1.876477	-1.395802
0	-2.056730	0.045813	0.299566
N	-0.990043	1.976230	-1.536298
0	0.987704	1.527627	0.169167
C	-2.813603	-0.935325	0.252628
C	0.656540	2.710660	-0.002029
N	1.229913	3.737972	0.635261
N	2.244101	3.498927	1.553117
N	-3.921159	-1.051631	0.994173
N	-4.261245	-0.039822	1.882330
N	-0.324192	3.028558	-0.899798
N	-2.544774	-1.965247	-0.602853
H	-0.717314	3.956542	-0.953613
H	-1.961425	1.942840	-1.231594
H	-0.962202	2.119098	-2.541499
H	0.923388	4.682840	0.444030
H	1.956530	3.788867	2.479942
H	3.086759	3.988866	1.279341
H	-1.654726	-1.929312	-2.377746
H	-0.770260	-2.646374	-1.173669
H	-3.106585	-2.802370	-0.639270
H	-4.497163	-1.879291	0.913707
H	-4.229235	-0.379846	2.835793
H	-5.184091	0.317732	1.668994
Fe	-0.177369	-0.020357	-0.560765

Table S3. The Cartesian coordinates of $\left[\mathrm{Co}(\mathrm{CHZ})_{2}\right]^{2+}$ of the optimized structure under the level of m062x/def2tzvp.

Atom	x	y	z
0	-0.988265	-1.461408	-0.490433
N	-1.981160	-0.120795	1.608705
N	-2.805650	-0.777016	0.687400
N	-3.049645	-1.949029	-1.266972
N	-4.427870	-1.841419	-1.109466
C	-2.228653	-1.392262	-0.370841
H	-3.812966	-0.687536	0.720858
H	-2.209172	0.871622	1.608445
H	-2.157134	-0.492587	2.538600
H	-2.625810	-2.395455	-2.069695
H	-4.850051	-2.760158	-1.034099
H	-4.836611	-1.341829	-1.891499
N	1.031149	-2.076953	1.399415
0	1.911756	-0.238456	-0.312514
N	1.216527	1.554254	1.735458
0	-0.638513	1.606176	-0.173760
C	2.513709	-1.319986	-0.296259
C	-0.020047	2.658094	0.032994
N	-0.216385	3.784894	-0.661984
N	-1.147676	3.802647	-1.691615
N	3.550223	-1.605888	-1.093918
N	3.992726	-0.659547	-2.008540
N	0.899524	2.733766	1.047564
N	2.156149	-2.297440	0.594829
H	1.542493	3.508948	1.115217
H	2.178551	1.288462	1.533067
H	1.122092	1.718064	2.733950
H	0.301831	4.620478	-0.424615
H	-0.691314	3.988545	-2.576280
H	-1.858479	4.500510	-1.510533
H	1.284820	-2.217663	2.373513
H	0.296431	-2.736489	1.149680
H	2.522716	-3.235444	0.530114
H	4.015667	-2.500531	-1.015570
H	3.875123	-1.000649	-2.954766
H	4.964249	-0.432189	-1.836725
Co	0.094160	-0.127926	0.664537

Table S4. The Cartesian coordinates of $\left[\mathrm{Ni}(\mathrm{CHZ})_{2}\right]^{2+}$ of the optimized structure under the level of m062x/def2tzvp.

Atom	x	y	z
0	0.976511	-1.397690	0.533537
N	1.929271	-0.114873	-1.614058
N	2.774131	-0.734577	-0.685360
N	3.050548	-1.840203	1.303787
N	4.425656	-1.720567	1.127820
C	2.213854	-1.321018	0.400033
H	3.779640	-0.633254	-0.734020
H	2.152885	0.877949	-1.653525
H	2.090040	-0.516844	-2.534232
H	2.640563	-2.260129	2.127806
H	4.858699	-2.636071	1.079277
H	4.835890	-1.190048	1.888489
N	-0.972367	-2.022282	-1.432660
0	-1.842274	-0.251242	0.351791
N	-1.168128	1.460874	-1.785983
0	0.583707	1.574939	0.213978
C	-2.438186	-1.333994	0.306651
C	-0.042124	2.611167	-0.037258
N	0.092463	3.749389	0.653304
N	0.969036	3.798545	1.728821
N	-3.457584	-1.657742	1.111379
N	-3.890734	-0.748568	2.067184
N	-0.906325	2.658612	-1.104492
N	-2.094744	-2.275508	-0.631830
H	-1.566390	3.414878	-1.210546
H	-2.137216	1.186458	-1.634188
H	-1.021144	1.607154	-2.780945
H	-0.430383	4.570716	0.379141
H	0.463919	3.979679	2.587548
H	1.671760	4.511433	1.577476
H	-1.229531	-2.130802	-2.409979
H	-0.235319	-2.689392	-1.210330
H	-2.437476	-3.223385	-0.580196
H	-3.919537	-2.551482	1.006323
H	-3.753986	-1.122514	2.998240
H	-4.866349	-0.521492	1.920185
Ni	-0.082122	-0.131769	-0.671176

Table S5. The Cartesian coordinates of $\left[\mathrm{Cd}(\mathrm{CHZ})_{2}\right]^{2+}$ of the optimized structure under the level of m062x/def2tzvp.

Atom	x	y	z
0	2.062363	-0.884412	-0.708648
N	2.080081	1.032815	1.223851
N	3.244217	0.522423	0.652269
N	4.308487	-0.893622	-0.797981
N	5.518326	-0.389691	-0.331515
C	3.151223	-0.437508	-0.300446
H	4.162345	0.848792	0.926149
H	2.111954	0.916323	2.232881
H	1.991594	2.027778	1.029710
H	4.254703	-1.610658	-1.509536
H	6.039511	0.040772	-1.087233
H	6.073900	-1.127480	0.086986
N	-0.792052	0.859844	-2.017859
0	-0.850290	1.914346	0.484055
N	-0.693727	-1.276026	2.085111
0	-1.508427	-1.489075	-0.479670
C	-1.499326	2.476220	-0.407769
C	-1.994190	-2.266886	0.345592
N	-2.928871	-3.179283	0.040417
N	-3.392996	-3.271384	-1.265301
N	-2.221968	3.588489	-0.196366
N	-2.288577	4.134926	1.078029
N	-1.590753	-2.258496	1.658348
N	-1.517794	2.005016	-1.692408
H	-2.115165	-2.757931	2.361560
H	-1.163294	-0.599992	2.684622
H	0.052066	-1.717403	2.615332
H	-3.231311	-3.845274	0.738975
H	-4.400176	-3.170990	-1.284433
H	-3.122965	-4.156592	-1.677213
H	-0.152364	1.055496	-2.781687
H	-1.415756	0.098621	-2.281480
H	-2.136285	2.399900	-2.385009
H	-2.681430	4.045209	-0.972872
H	-3.249645	4.173554	1.393990
H	-1.882377	5.062464	1.087639
Cd	0.150389	-0.057615	0.074485

Table S6. The syngony, symmetry, band gaps, cell parameters, selected atomic charges, typical bond lengths and bond angles of crystal $\mathrm{CHZ},\left[\mathrm{CHZ}^{+}\left(\mathrm{ClO}_{4}{ }^{-}\right)\right]$and MCPs.

	CHZ	$\left[\mathrm{CHZ}^{+}\left(\mathrm{ClO}_{4}\right)\right]$	MnCP	FeCP	CoCP	NiCP	ZnCP	CdCP
syngony	monoclinic							
Space								
	group							P21/C
Band gap			4.11	3.66	3.70	3.77		
(eV)	5.18	5.18	$(3.33)^{1}$	$(2.74)^{1}$	$(1.73)^{1}$	$(1.79)^{1}$	4.91	4.56
a (A)	9.05	11.15	11.04	10.54	10.47	10.46	10.51	10.53
	$(3.72)^{2}$	$(10.00)^{2}$	$(10.20)^{2}$	$(10.07)^{2}$	$(10.05)^{2}$	$(9.97)^{2}$	$(10.00)^{2}$	$(10.28)^{2}$
b (Å)	4.66	7.41	8.74	8.82	8.72	8.76	8.72	8.97
	(8.82)	(8.42)	(8.59)	(8.46)	(8.54)	(8.56)	(8.43)	(8.62)
$c(A)$	10.65	9.41	21.29	22.10	22.18	22.61	22.17	23.53
	(11.96)	(21.21)	(21.41)	(21.19)	(21.43)	(21.43)	(21.22)	(21.36)
$\alpha\left({ }^{\circ}\right)$	90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00
$8\left({ }^{\circ}\right)$	96.93	109.40	97.73	99.57	99.75	107.50	99.89	109.39
$v\left({ }^{\circ}\right)$	90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00

[^1]Table S7. The temperature of ions ($\mathrm{T}_{\text {ion }}$), kinetic energies of virtual electrons ($\mathrm{e}_{\text {kinc }}$) and the total electronic energies ($\mathrm{e}_{\text {tot }}$) of MCPs (M^{2+}
$=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$ and $\left.\mathrm{Cd}^{2+}\right)$.

	MnCP	FeCP	CoCP	NiCP	124.35
Tions (K)	60.83	11.70	51.59	16.50	1.46×10^{-2}
ekinc (a.u)	1.99×10^{-1}	1.19×10^{-2}	1.04×10^{-1}	6.81×10^{-3}	-1723.48
etot (a.u)	-1842.57	-1923.89	-1996.54	-2091.19	

[^0]: \ddagger These two authors contributed equally to this work.

[^1]: ${ }^{1 .}$ The value in bracket is the band gap of spin-down electrons;
 ${ }^{2}$. The values in brackets are the experimental results.

