Electronic Supplementary Information

Plasmon-Catalysed Decarboxylation of Dicarboxybipyridine Ligands in Ru(II) Complexes Chemisorbed on Ag Nanoparticles: Conditions, Proposed Mechanism and Role of Ag(0) Adsorption Sites

Markéta Žůrková-Kokošková^a, Ivana Šloufová^a, Veronika Gajdošová^b and Blanka Vlčková^a*

* Correspondence to: Blanka Vlčková, Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague 2, 128 40, Czech Republic, e-mail: vlc@natur.cuni.cz, phone +420 221951309

^a Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague 2, 128 40, Czech Republic; vlc@natur.cuni.cz, marketazurkova@email.cz, ivana.sloufova@natur.cuni.cz

^b Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic; gajdosova@imc.cas.cz

Content:

Fig. S1-S9

Tab. S1-S3

Fig. S1. Structure and electronic absorption spectra of (A) Ru(bpy)₂(dcbpy), (B) Ru(dcbpy)₃, (C) Ru(bpy)₃ complexes.

Fig. S2. (A) RRS of Ru(bpy)₂(dcbpy) in a 1×10^{-4} M aqueous solution, (B) SERRS spectra of Ag NP hydrosol/Ru(bpy)₂(dcbpy) (1×10^{-6} M) system, both spectra measured at 445 nm excitation.

Fig. S3. (A) RRS of Ru(dcbpy)₃ in a 1×10^{-4} M aqueous solution, (B) SERRS spectra of Ag NP hydrosol/Ru(dcbpy)₃ (1×10^{-5} M) system, both spectra measured at 445 nm excitation.

Fig. S4. (A) RRS of Ru(bpy)₃ in a $1x10^{-4}$ M aqueous solution, (B) SERRS spectra of Ag NP hydrosol/Ru(bpy)₃ ($1x10^{-6}$ M) system, both spectra measured at 445 nm excitation.

Ru(bpy)₂(dcbpy) RRS	Ru(bpy)₂(dcbpy) SERRS
1029	1026
1174	1175
1271	1255
	1293
1319	1318
1477	1474
1490	1489
1541	1536
1562	1560
1608	1606

	1	
	F 1	of DDC and CEDDC an actual bands of D. (ban) (dalam)
lan SI wavenimners	ICM	OT RRN and NERRN spectral pands of Rillingvial depivit
	ICIII	

Ru(dcbpy)₃ RRS	Ru(dcbpy)₃ SERRS	
1025	1028	
1270	1268	
1296	1295	
1480	1476	
1542	1542	
1614	1614	

Tab. S2. Wavenumbers [cm⁻¹] of RRS and SERRS spectral bands of Ru(dcbpy)₃.

Tab. S3. Wavenumbers [cm⁻¹] of RRS and SERRS spectral bands of Ru(bpy)₃.

Ru(bpy)₃ RRS	Ru(bpy)₃ SERRS	Ru(bpy) NCA, PED [%] ^{[26]#}
1028	1027	ν (C ₄ -C ₅), 25; ν (C ₂ -C ₃), 23; ν (C ₃ -C ₄), 13; δ (CCH), 12
1173	1173	δ(CCH), 81
1276	1273	ν(C ₂ -C ₃), 50; ν(C-N), 45; ν(C ₃ -C ₄), 30; ν(C ₄ -C ₅), 21
1318	1317	δ(C ₂ C ₃ H), 36; δ(CCH), 23; ν(C ₂ -C ₂ ·), 17
1489	1488	δ(CCH), 25; ν(C ₂ -C ₃), 20; ν(C ₂ -C ₂ ·), 20; ν(C-N), 18; δ(C ₂ C ₃ H), 18
1560	1558	ν(C ₄ -C ₅), 42; ν(C-N), 22; δ(CCH), 18
1606	1603	$\nu(C_2-C_3)$, 43; $\nu(C_2-C_2)$, 14; $\nu(C-N)$, 14; $\nu(C_3-C_4)$, 11

[#] NCA, PED taken from ref. 26

Fig. S5. RRS spectrum of $Ru(bpy)_2(dcbpy)$ in an aqueous solution (A) prior, (B) after addition of aqueous NaCl solution (5x10⁻² M final concentration of NaCl in the system).

Fig. S6. SERS spectra of $Ru(bpy)_2(dcbpy)$ (A), of $Ru(bpy)_3$ (B), SERS spectrum of $Ru(bpy)_2(dcbpy)/NaBH_4/AgNO_3$ system measured 5 min. after preparation (C) and SERS spectrum of $Ru(bpy)_2(dcbpy)$ after addition of chlorides (D). All spectra measured at 532 nm.

Fig. S7. SERS spectrum of $Ru(bpy)_2(dcbpy) / NaBH_4 / AgNO_3$ system measured 5 min. after preparation at 780 nm excitation.

Fig. S8. SERRS spectra of (A) Ag NP hydrosol/Ru(dcbpy)₃ system, (B) Ag NP hydrosol/Ru(dcbpy)₃/NaCl $(2x10^{-2} \text{ M})$ system, and (C) Ag NP hydrosol/Ru(dcbpy)₃/NaCl $(2.5x10^{-2} \text{ M})$ /HCl $(1x10^{-2} \text{ M})$ system.

Fig. S9. UV/vis absorption spectra depicting SPE of Ag NPs in (A) Ag NP hydrosol/Ru(dcbpy) $_3$ system, (B) Ag NP hydrosol/Ru(dcbpy) $_3$ /NaCl (2x10⁻² M) system, and (C) Ag NP hydrosol/Ru(dcbpy)₃/NaCl (2.5x10⁻² M)/HCl (1x10⁻² M) system.