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S1 Methodological details

S1.1 Second hyperpolarizability calculation

Numerical Implementation:

To compute the second hyperpolarizability, we use the Finite Field (FF) method. The second hy-

perpolarizability is defined as the linear coefficient of the first hyperpolarizability evolution relative

to an applied electrostatic field. For a vacuum calculation :

γ
vac
abcd(2ω,ω,ω,0) =

δβ vac
abc(2ω,ω,ω)[ed]

δed
, (S1)

where the dependence relative to the exciting frequency is noted with parentheses (), and the de-

pendence relative to an external static field is noted with hooks []. For the PE calculations, the

embedding creates an electric field ePE , and we define again γ in the PE embedding as the same

derivative, but the field derivative is done around the field ePE .

γ
PE
abcd(2ω,ω,ω,0) =

δβ PE
abc(2ω,ω,ω)[ed]

δed
(S2)

The Equations S1 and S2 are written in the molecular frame: the first and second hyperpolar-

izability tensors β and γ are expressed in the molecular frame as well as the electrostatic field e.

Note that this electrostatic field e is spatially-homogeneous within the QM box, and is added to

the one created by the PE environment. As a reminder, the later electrostatic field created by the

environment ePE can be spatially-heterogeneous. In the following, we omit the PE notation and

the explicit adding of ePE in the molecular frame, or EPE in the laboratory frame. Practically, the

components second hyperpolarizability components are obtained using linear fit:

βabc(2ω,ω,ω)[e0
d] = βabc(2ω,ω,ω)[e0

d = 0]+ γabcd(2ω,ω,ω,0)e0
d (S3)

Bi jk(2ω,ω,ω)[E0
l ] = Bi jk(2ω,ω,ω)[E0

l = 0]+Γi jkl(2ω,ω,ω,0)E0
l , (S4)
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where B and Γ are the first and second hyperpolarizability in the laboratory frame, E is also

expressed in the laboratory frame. All the quantities (first and second hyperpolarizabilities, elec-

trostatic fields, etc.) are in atomic units.

For every molecule, several QM simulations are performed:

• One without extra electrostatic field, to get β (2ω,ω,ω)[0]

• For every direction l, 6 QM calculations are performed with increasing electrostatic field,

from 0.1 to 1.5×10−3 a.u. .

For each of these calculations, the hyperpolarizability tensor is computed: each simulation returns

27 components. To obtain the second hyperpolarizability component i jkl, the evolution of the

hyperpolarizability component i jk is plotted with respect to the electric field along the l direction.

For instance, in the Figure S1 is plotted the evolution of the βccc component in function of the

electric field along the c direction. The slope of this linear evolution is the γcccc components.

Globally, to obtain all the second hyperpolarizability components, we require 19 QM calculations

per molecule.

We have verified that the linear dependency remains valid if the electrostatic finite field is

directed in an arbitrary direction – data not shown. Within our range of electrostatic field applied

(10−3 a.u. or 10−2 V.Å −1):

β (2ω,ω,ω)i jk[e] = β (2ω,ω,ω)i jk[0]+∑
l

γi jkl(2ω,ω,ω,0) el (S5)

Finally, to convert the second hyperpolarizability from the molecular to the laboratory frame,

we use the rotational matrix R defined from the expression of the laboratory-frame unit vectors
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Figure S1: Evolution of one hyperpolarizability component as a function of the applied static and
homogeneous electric field. Both hyperpolarizability and the electric field are expressed within the
molecular frame. The obtained second hyperpolarizability component is shown in the legend, in
atomic units.

Vlab in the molecular frame unit vectors Vmol
a :

Vlab
i = ∑

a
RiaVmol

a , (S6)

βabc(2ω,ω,ω) = ∑
i jk

RaiRb jRckχi jk(2ω,ω,ω), (S7)

γabcd(2ω,ω,ω,0) = ∑
i jkl

RaiRb jRckRdlΓi jkl(2ω,ω,ω,0). (S8)

(S9)

Finite Field Versus Response Theory:

Using DALTON, we can compute the second hyperpolarizability within a response scheme. We

have compared the laboratory second hyperpolarizability obtained using the Finite Field method

(using 19 QM calculations) to the one using the response theory in Table S1 for some components

of a molecule in the vacuum. Very good agreement is found: an error about 20 a.u. can be expected
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due the numerical calculation for the second hyperpolarizability. Same results have been found

for second hyperpolarizability calculation within the PE environment – data not shown. Hence,

throughout the article, the values are rounded to tens of a.u.

Table S1: Second hyperpolarizability components in the laboratory frame for a water
molecule in vacuum, in atomic units. The results obtained by the Finite Field method pre-
sented in the main text and the one provided by DALTON using the response theory are com-
pared. The calculations have been made at 2 fundamental wavelength: 800 nm and the
infinity wave-length limit.

Γ(2ω,ω,ω,0) λ = 800 nm λ →+∞ nm
Response Finite Field Response Finite Field

Γxxxx 2604 2632 2094 2111
Γxxyy 744 745 583 584
Γxyyx 725 731 583 587
Γxyxy 744 745 583 584
Γxxzz 978 978 790 789
Γxzzx 965 969 790 784
Γxzxz 978 978 790 789
Γyyxx 693 698 583 587
Γyxxy 699 700 583 584
Γyxyx 693 698 583 587
Γyyyy 1234 1233 1054 1054
Γyyzz 818 816 680 678
Γyzzy 827 825 680 679
Γyzyz 818 816 680 678
Γzzxx 1025 1032 790 794
Γzxxz 988 987 790 789
Γzxzx 1025 1032 790 794
Γzzyy 916 916 680 679
Γzyyz 876 873 680 677
Γzyzy 916 916 680 679
Γzzzz 3491 3476 2719 2710

Comparison with Literature:

To conclude methodological checks, we have compared our results with the ones obtained in

the literature. First, with the gold standard, Couple Cluster Single Double (CCSD), in the vacuum
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phase. We compare our results with two recent works by Liang et. al.1 and Beaujean et. al.2 using

CCSD with the d-aug-cc-pVTZ basis set at zero frequency. Table S2 compares components at zero

frequency. Table S3 compares the experimentally relevant γ∥, γTHS or DRTHS that are defined as:

γ∥ =
1

15 ∑
i, j

γii j j + γi ji j + γi j ji, (S10)

γTHS =
√

Γ2
zzzz +Γ2

zxxx, (S11)

DRTHS = Γ
2
zzzz/Γ

2
zxxx. (S12)

Indeed, these reduced values appear in scattering experiments since the experimental results cannot

provide directly individual components. For complete γTHS and DRTHS expressions, see Ref3 for

instance.

The difference observed characterize the error made due to DFT/CAM-B3LYP instead of

CCSD and is comparable for the first and second hyperpolarizability: around 10%. An im-

portant point is the large frequency dependence of the second hyperpolarizability, see Table S3,

which is quite well reproduced by DFT. We can also note the recent work of Besalú-Sala4 which

provides advice for tuning DFT functional to get γ closer to CCSD ones. They mention that

DFT/CAMB3LYP is the best standard functional to use for water in vacuum, and that it overesti-

mates the γ .

Regarding the liquid phase, the work by Osted et.al.5 provides a prediction for the water second

hyperpolarizability. We are using the same methodology but with more approximation: (1) they

used CCSD with the same basis ; (2) Their MD simulation has been made using a polarizable force

field ; (3) Their electrostatic embedding also include a polarizable part while we are not. They

propose an pure electric γ∥(2ω,ω,ω,0) = 2070 a.u. at λ ≈ 1080 nm. They compare this result by

the one proposed by Levine and Bethea:6 γ∥(2ω,ω,ω,0) = 2134 a.u. at the same frequency. We

find, γ∥(2ω,ω,ω,0) equal to 1730 a.u at 800nm and 1440 a.u at infinite wavelength. Our result

is close to the experimental one, but is too small. However, in the liquid phase decreasing the

wavelength seems to increase γ∥. At 1080 nm we may hope our liquid γ∥ to be closer than the
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Table S2: Water second hyperpolarizability in vacuum phase, in atomic unit, in the static
limit. Our results (DFT/CAMB3LYP) are compared to the ones obtained by Liang et. al.1

(CCSD).

γ Zero frequency
CCSD1 DFT/CAMB3LYP

γaaaa 863 965
γaabb 654 763
γbbbb 2711 3156
γcaac 450 507
γcbbc 724 828
γcccc 1506 1678
γ∥ 1747 1998
γT HS 1794 2090
DRTHS 73 70

Table S3: Water second hyperpolarizability in vacuum, in atomic unit. Our results
(DFT/CAMB3LYP) are compared to the ones obtained by Beaujean et. al.2 (CCSD). Sev-
eral wave-length of calculation are shown, in nanometer. We also observe that γT HS increases
with decreasing frequency while the depolarization ratio decreases.

CCSD2 DFT/CAMB3LYP
Frequency [nm] γT HS [a.u.] DRTHS γT HS [a.u.] DRTHS

+ inf 1821 76 2090 70
1064 2288 49 NA NA
800 NA NA 2640 47
694.3 3401 24 NA NA
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experimental value.

S1.2 Convergence of β and γ relative to the configuration number

In Figure S2 and S3 the evolution of the mean values of the first and second hyperpolarizabilities at

800 nm are plotted as a function of the number of configurations used for the averaging. For every

component, the evolution is compared to the last value (using 2400 configurations). Respectives

errors of about 0.05 a.u. and 10 a.u. can be expected for the first and second hyperpolarizabilities

due to the configuration averaging – which is far less than the error made using DFT. Finally, we

0 500 1000 1500 2000 2500
N 

0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100

<
en

v
>

<
en

v
>

N
 [a

.u
.] caa

cbb
ccc
abc

Figure S2: Convergence of ⟨β env⟩ relative to the number of configurations used. The reference
value is given for N=2400 configurations.

have also checked that the sample obtained using these 2400 configurations is isotropic. Indeed,

in top of the symmetry verification of the second hyperpolarizability, see the next section, the first

hyperpolarizability in the laboratory frame has been computed. This tensor should be strictly null

in average, because of the inversion symmetry inherent to the bulk phase. We obtained indeed a

maximal average of 0.2 a.u. for all components.
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Figure S3: Convergence of ⟨γenv⟩ relative to the number of configurations used. The reference
value is given for N=2400 configurations.
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S2 Second hyperpolarizability γ in the bulk phase

S2.1 Symmetry, averages and standard deviations of γ

Table S4 and S5 report the second hyperpolarizability values in the molecular and laboratory

frames, respectively. Only the components larger than 15 a.u. in average are shown.

Due to the C2v molecular symmetry of water, only few γ components should be different of

zero. The components γiiii and the γii j j with all permutations, where i and j can be a, b, or c.

Regarding the second hyperpolarizability in the laboratory frame Γ, the averages should repre-

sent a centro-symmetric system. Hence, all Γpppp should be similar to 3 times Γppqq (with all

permutations), where p and q can be the laboratory axis x, y, or z.7

In the molecular frame, the C2v molecular symmetry is respected by our results. The symmetry

forbidden components have averages that are smaller than 15 a.u., our typical statistical error ; they

are not strictly zero, due to statistical inaccuracies. In the laboratory frame, the centro-symmetry is

also fulfilled regarding the Γ components. It confirms that our sample of 2400 molecules represents

a centro-symmetric medium.
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Table S4: γ(2ω,ω,ω,0) value in the vacuum and in bulk at 800 nm. For the bulk phase,
the average, ⟨γenv⟩, and standard deviation, σ [γenv], are presented in atomic unit. Absent
components, which correspond to the C2v symmetry forbidden ones, are below 15 a.u. in
averaged for the bulk phase. The γ∥ is defined in Equation S10.

γ γvac ⟨γenv⟩ σ [γenv]

γaaaa 1110 740 140
γaabb 930 640 200
γaacc 590 370 60
γabab 930 640 200
γabba 940 660 140
γacac 590 370 60
γacca 590 370 80
γbaab 1000 680 220
γbaba 1070 710 150
γbbaa 1060 710 150
γbbbb 4090 2940 650
γbbcc 1120 770 170
γbcbc 1120 770 170
γbccb 1060 750 200
γcaac 610 380 60
γcaca 610 380 80
γcbbc 1010 730 150
γcbcb 1010 720 180
γccaa 610 380 80
γccbb 1000 720 180
γcccc 2000 1400 230
γ∥ 2500 1730
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Table S5: Second hyperpolarizability in the laboratory frame Γ(2ω,ω,ω,0) in the liquid
phase at 800 nm. The average and standard deviation are presented in atomic unit, ⟨Γenv⟩
and σ [Γenv] respectively. Absent components, which correspond to the inversion symmetry
forbidden ones, are bellows 15 a.u.

Γ ⟨Γenv⟩ σ [Γenv]

Γxxxx 1740 830
Γxxyy 580 150
Γxxzz 580 160
Γxyxy 580 150
Γxyyx 580 170
Γxzxz 580 160
Γxzzx 570 150
Γyxxy 580 150
Γyxyx 580 170
Γyyxx 580 170
Γyyyy 1740 690
Γyyzz 580 170
Γyzyz 580 170
Γyzzy 570 150
Γzxxz 570 150
Γzxzx 580 150
Γzyyz 570 170
Γzyzy 580 150
Γzzxx 580 150
Γzzyy 580 150
Γzzzz 1710 660

13



S2.2 Relationship between bulk and vacuum values of water γ

Figure S4 displays the mean values of the γ components in the bulk, with respect to their values in

the vacuum phase. For all components, a ratio of about 0.7 is found: the electrostatic embedding

seems to reduce the second hyperpolarizability in the same way for all components.
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Figure S4: Mean value of the bulk non vanishing γ components as a function of their vacuum
values. The dashed line represents a linear fit. The second hyperpolarizabilities are taken in the
molecular frame.
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S2.3 γ dispersity

Figure S5 presents the individual values of two β and γ components in the liquid phase: βyyy in

function of βzyy and γyyyz in function of γzzxx. Due to the C2v symmetry, βyyy and γyyyz are null on

average,while βzyy and γzzxx have a non-zero average value. However, due to the wide dispersion

of all these components, some molecules have larger βyyy than βzyy, or larger γyyyz than γzzxx.
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Figure S5: Distributions of some first and second hyperpolarizability components for liquid water.
Each point represent one of the 2400 configurations of a water molecule in liquid water. Left : βyyy
in function of βzyy. Right : γyyyz in function of γzzxx. Calculation for an excitation wavelength of
800 nm.
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S3 Space heterogeneity of the Electrostatic field generated by

the neighborhood

Here, we report the evolution of the spatial gradient of the electrostatic field generated by the PE

embedding, depending on the environment size Rc. We have calculated

⟨|∆δei/δ j|⟩(Rc) =
1
N ∑

n

∣∣∣∣( δei

δx j

)n

[Rc]−
(

δei

δx j

)n

[R f ]

∣∣∣∣ , (S13)

where
(

δei
δx j

)n
[Rc] is the spatial gradient along the molecular direction j of the electrostatic field

along the direction i generated by an environment up to Rc around the molecule n. Figure S6

displays ⟨|∆δei/δ j|⟩(Rc) with a logarithmic scale, and a reference gradient at Rc = R f = 40 Å. Ac-

cording to the Figure S6, the total spatial gradient is quite large at small distance: about 10−2 a.u..

However, after few Angstroms, the neighborhood contribution to the spatial gradient drops.
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Figure S6: Evolution of the electrostatic gradient with respect to the environment size Rc. The
averaged difference with respect to each molecule value at Rc = R f = 40Åis plotted in logarithmic
scale. The electrostatic field direction are represented by the 3 curves: along a (blue circle), b
(green diamond) and c (orange square). The spatial direction of the derivative is presented from
left to right: along the molecular axis a, b and c.
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S4 γ-based correction: impact of γ fluctuations

In the main text, the same value of γ is attributed to all the water molecules to calculate our

hyperpolarizability correction. To estimate the relevance of this approximation, 3 different ways

of including the environment are compared here:

β
PE(Rc) = β

PE(Rc), (S14)

β
PE+L(Rc) = β

PE(Rc)+ ⟨γenv⟩ ·∆e(Rc), (S15)

β
PE+γL(Rc) = β

PE(Rc)+ γ
env ·∆e(Rc). (S16)

The QM/MM calculation up to a distance Rc, is noted β PE(Rc). The same β PE(Rc) but where

the distant neighbors, between Rc and R f are taken into account using the electric field they pro-

duced, ∆e(Rc), using the averaged second hyperpolarizability ⟨γenv⟩ is noted β PE+L(Rc) and is

presented in the main text. Finally, we also present here the results for β PE+γL(Rc) that uses the

individual values of the molecular second hyperpolarizability, instead of the averaged one.

Figure S7 presents the evolution of the average with respect to Rc and Figure S8 the ∆βT :

∆β
X
T =

1
27N ∑

i jk

N

∑
n=1

|β env(n)
i jk −β

X(n)
i jk |, (S17)

also used in the main text. For the average, the result of β PE+L and β PE+γL are almost in top of

each others. For Rc larger than about 5 Å, the results are converged. For the ∆βT , both corrections

using ∆e(Rc) are efficient. However, the β PE+γL error decreases more rapidly: if the effect of the

γenv dispersion cannot be seen in the average predicted β , it is more important for individual value

quantity such as ∆βT . However, increasing Rc using β PE+L seems to achieve the same result as

β PE+γL. Hence, using the averaged γenv is justified for water in the liquid phase.
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Figure S7: Evolution of the β X
ccc(Rc) averaged for the three corrections. The dashed line is the

reference value obtained for Rc = R f = 4 nm.
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Figure S8: Evolution of the ∆β X
T (Rc) for the three corrections. The dashed line represents the

values at which convergence is considered to be obtained, and acts as a guide for the eyes.
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