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1 Training details
The DataParallel class implemented in the PyTorch Geometric Python (version 1.7.2) package was used to train
the model in parallel on multiple graphical processing units (GPUs). The dataset splitting procedure is schematically
depicted in Fig. S1. Models with training set sizes of 100k samples or more were parallelized across 4 GPUs (Nvidia
GeForce GTX 1080) and trained for 72 to 120 hours, those with training set sizes of 10k were trained on a single GPU
for 24h, and models for training sets containing fewer than 1k samples were trained for 4h. All models use a batch size
of 16 samples. All non-production (i.e., those with fewer than ∼2M training samples) models were optimized using
the Adam stochastic gradient descent optimizer1, with a starting learning rate of 10−4 (5 × 10−4 for the single-task
orbital energies and the multi-task models), a mean squared error loss (MSE) on the training set, a decay factor
of 0.7, a decay patience of 20 gradient updates for the mean absolute error (MAE) observed on the validation set,
and an exponential smoothing factor of 0.9. Optimized models were only stored if they achieved an improved MAE
on the chosen validation set (early stopping). The constants for the adapted loss functions (β for the formation
energy loss Lform and λ for Wiberg bond order loss Lwbo) were chosen from screening the following hyperparameters:
β ∈ {0.1, 0.25, 0.5, 1, 2, 4, 8, 16} and λ ∈ {5×10−3, 10−2, 5×10−2, 10−1, 5×10−1, 1}. Production models were trained for
a fixed number of 50 total epochs for all endpoints, with an otherwise identical training setup. All models considered in
this study were trained using the Leonhard and Euler clusters at ETH Zurich. Models for different training set sizes and
single-task models and models for the QM9 dataset are available at https://doi.org/10.3929/ethz-b-000520281.
A training tutorial is included in the project’s GitHub repository ((https://github.com/josejimenezluna/delfta)).
Nested training sets were used for the learning curves, so that all molecules used for training with a smaller subset
were also used for training with a larger subset. This approach allowed us to study the effect of adding a certain
number of molecules to the training set and its impact on model accuracy.
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Fig. S1. Schematic of the data splitting procedure. Note that for the formation energy models, all conformers of the
same molecule were grouped within the same split, yielding training set sizes of approximately 300, 3k, 30k, 300k, and
1.6M samples. For all other models a single conformer was used within the same split, yielding training set sizes of
100, 1k, 10k, 100k and 547k, 1.6M samples.
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2 Scatter plots for direct-learning models
Fig. S2 shows the distribution of the direct-learning predictions relative to ground-truth reference values for molecules
from the test sets.

DFT reference (ωB97X-D/def2-SVP)

D
el

FT
a

re
sp

.G
FN

2-
xT

B

−1500 −1000 −500 0
−1500

−1000

−500

0
EForm / eV

86.3429 eV

0.0335 eV

A

−14 −12 −10 −8 −6 −4
−14

−12

−10

−8

−6

−4
EHOMO / eV

2.1154 eV

0.0350 eV

B

−12−10 −8 −6 −4 −2 0 2 4
−12

−10

−8

−6

−4

−2

0

2

4
ELUMO / eV

7.7730 eV

0.0368 eV

C

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14
EGap / eV

5.6576 eV

0.0529 eV

D

−10 0 10 20 30 40
−10

0

10

20

30

40
Total molecular
dipole / D

0.6220 D

0.1588 D

E

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5
Mulliken partial
charges / e

0.0610 e

0.0029 e

F

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Wiberg bond orders

0.0592

0.0017

G

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Conformer pairwise
energy difference
/ eV

0.0736 eV

0.0343 eV

H

MAE DelFTa

MAE GFN2-xTB

min

max

Po
in

td
en

si
ty

(D
el

FT
a)

min

max

Po
in

td
en

si
ty

(G
FN

2-
xT

B)

Fig. S2. Scatter plots illustrating the accuracy of the predictions provided by the trained direct-learning models and
the GFN2-xTB baseline, w.r.t. DFT reference properties (ωB97X-D/def2-SVP) for ∼88k test set molecules (∼263k
conformers). Direct-learning predictions obtained using the models trained on the 1.6M conformer training set, and
with single-/multi-task settings as described in the Methods section. Wiberg bond order results only for bonds where
a GFN2-xTB value is available (excl. two interactions for which the DFT-value is higher than 0.05). Colorbars scaled
individually for each property.

3 Benchmark against ωB97X-D/def2-QZVP
We put the performance of the models trained on 1.6M conformations (both for ∆- and direct-learning paradigms) in
the context of the same chosen reference functional but with a more comprehensive basis set, namely ωB97X-D/def2-
QZVP2,3. In order to do so, for 1k randomly-sampled molecules from the considered test sets, with three conformers
each, the QM properties investigated in this study were recomputed using the aforementioned basis set. Computations
were performed using Psi44 (version 1.3.2). 958 molecules (corresponding to 2, 874 conformations) for which all three
conformers could be successfully computed using empirically-determined limits of computational resources (4 CPU
cores for 24 h wall-time, up to 40 GB of system memory, and 400 GB of local disk space) were included in this bench-
mark (see https://doi.org/10.3929/ethz-b-000520329). MAEs w.r.t. these results were compared for the four
considered methods (ωB97X-D/def2-SVP2,3, GFN2-xTB5–8, and the trained models in both ∆- and direct-learning
settings) for all eight properties considered in this study and results are shown in Table S1.

∆-learning models offer advantage over their directly-trained analogues for some of the endpoints considered, namely
formation energies, dipoles, and conformer pairwise energy differences. Interestingly, for some others (e.g., LUMO
energies and HOMO-LUMO gap) the contrary holds true with regards to this basis set choice.

The machine-learning predictions are closer to ωB97X-D/def2-QZVP reference values than its baseline GFN2-
xTB for the formation energy, orbital energies incl. HOMO-LUMO gap, molecular dipole, Wiberg bond orders, and
conformer pairwise energy differences endpoints. However, the greater accuracy of GFN2-xTB compared to ωB97X-
D/def2-SVP for Mulliken partial charges imply that neither ∆- nor directly-predicted values can improve on accuracy
over the baseline.
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Table S1: Benchmark results showing MAEs w.r.t. ωB97X-D/def2-QZVP reference values for 958 molecules (2, 874
conformers) from the test sets. Wiberg bond order results only for covalent bonds. Bold numbers highlight the best
performing method between GFN2-xTB, ∆- and direct-learning.

Property Unit ωB97X-D/
def2-SVP GFN2-xTB DelFTa

∆ direct

Formation energy eV 2.9093 85.1303 2.9085 2.9135
HOMO energy eV 0.0606 2.0579 0.0756 0.0745
LUMO energy eV 0.1416 7.6384 0.1404 0.1272
HOMO-LUMO gap eV 0.0874 5.5807 0.0896 0.0793
Dipole D 0.1203 0.6059 0.1556 0.1955
Mulliken partial charges e 0.0739 0.0609 0.0742 0.0742
Wiberg bond orders - 0.1006 0.1583 0.1007 0.1004
Conformer pairwise energy difference eV 0.0382 0.0707 0.0434 0.0515
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Fig. S3. Scatter plots illustrating the accuracy of the predictions provided by the trained ∆-learning models and the
GFN2-xTB baseline as well as the ground truth ωB97X-D/def2-SVP computations, w.r.t. reference values computed
with a larger basis set (ωB97X-D/def2-QZVP) for 958 test set molecules (corresponding to 2, 874 conformations).
∆-learning predictions obtained using the models trained on the 1.6M conformer training set, and with single-/multi-
task settings as described in the Methods section. Wiberg bond orders for covalent bonds only. Colorbars scaled
individually for each property.

4 Non-covalent interactions in biomolecules
The structures of eight selected biomolecules extracted from the Protein Data Bank (PDB)9 were prepared with
Molecular Operating Environment (version 2019.0102). The structures were prepared using the QuickPrep
module with the following parameters: Preserve Sequence and Neutralize, Use Protonate 3D for Protonation:
True, Allow ASN/GLN/HIS "Flips" in Protonate 3D: True, Delete: No deletions, Tether Receptor: No changes,
Fix: All atoms fixed, Refine: No refinements. Subsequently the structures were manually curated, whereby
all atoms were removed which were farther away than one additional residue from the non-covalent interactions of
interest. The resulting radicals which were generated due to the broken covalent bonds were padded with hydrogen
atoms. The final number of atoms per biomolecule were in the range of 54 (PDB ID: 5GNJ) to 375 (PDB ID: 3H0O).
Structures are available at https://doi.org/10.3929/ethz-b-000520281.

5 Reference calculations for charged molecules
To investigate the performance of the DelFTa application on charged molecules, 100 molecules were randomly chosen
from the test sets and their SMILES notation was extracted. The molecules’ protonation states were modified (to pH
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PDB ID: 1BNA PDB ID: 3H0O
!B97X-D ML

a 0.0647 0.0705
b 0.1053 0.0987
c 0.1188 0.1154
d 0.1161 0.1141
e 0.1721 0.1693
f 0.0823 0.0725
g 0.1036 0.0908
h 0.0808 0.0765
i 0.0958 0.0888
j 0.1735 0.1632

!B97X-D ML
a 0.0801 0.0060
b 0.1561 0.1343
c 0.1513 0.1082
d 0.1483 0.1396
e 0.0516 0.0053
f 0.2727 0.2057
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Fig. S4. Non-covalent interactions in selected biomolecules. For panel B, backbone shown semi-transparently for
visual clarity. Interactions with DFT-calculated Wiberg bond orders between 0.05 and 0.8 shown, and both calculated
(ωB97X-D/def2-SVP) and predicted (ML, using models trained on 1.6M datapoints) values tabulated. Only interac-
tions with calculated values between 0.05 and 0.8 are displayed. Interactions with solvent atoms and between atoms
fewer than six covalent bonds apart not shown.

0 and 14, respectively) using Openbabel10 (version 3.1.1). 59 molecules which exhibited a net charge different from
zero were kept and processed in the same way as was done for the molecules in the QMugs data collection (generation
of three conformers per molecule (totalling 177 conformers), geometry optimization, and ωB97X-D/def2-SVP QM
calculations). For a detailed description of the process, see reference 11. QM calculations for 176 of the 177 conformers
converged in 100 SCF iterations, the unconverged structure was discarded. The results from those calculations are
available at https://doi.org/10.3929/ethz-b-000520329. Table S2 shows the distribution of formal charges. The
machine-learning models presented in this work (trained on 1.6M molecules) were used to predict the eight endpoints.
Table S3 shows the results from these calculations.

Table S2: Distribution of formal charges for 176 conformers.

Formal charge Number of conformers

+2 24
+1 93
-1 54
-2 3
-3 2

Table S3: Benchmark results showing MAEs w.r.t. ωB97X-D/def2-SVP reference values for 176 conformers from
the reference calculations for charged molecules. Wiberg bond order results only for bonds where a GFN2-xTB value
is available. Bold numbers highlight the method with the lowest MAE w.r.t. reference values.

Property Unit GFN2-xTB DelFTa
∆-learning direct-learning

Formation energy eV 90.0 5.90 576
HOMO energy eV 0.797 9.37 26.6
LUMO energy eV 0.430 9.16 59.8
HOMO-LUMO gap eV 0.813 14.2 54.9
Total molecular dipole D 2.22 19.8 132
Mulliken partial charges e 0.0588 0.0098 0.0240
Wiberg bond orders - 0.0569 0.0037 0.0051
Conformer pairwise energy difference eV 0.178 0.128 0.578
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