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SABRE Enhancement with Oscillating Pulse Sequences: Symmetry Reduces 

Robustness 

Xiaoqing Li, Jacob R. Lindale, Shannon L. Eriksson, Warren S. Warren* 

Abstract: SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to hyperpolarize 

a wide variety of molecules in solution, and have been demonstrated with protons and, more recently, with heteronuclei (X-SABRE). The 

conventional analysis of the SABRE effect is based on level anti-crossings (LACs), which requires very low magnetic fields (~ 0.6µT) to 
achieve resonance and transfer spin order from the para-hydrogen to target heteronuclei. We have demonstrated in our recent study that 

the validity of LACs used in SABRE is very limited, so the maximum SABRE polarization predicted with LACs is not correct. Here, we present 

several oscillating pulse sequences that use magnetic fields far away from the resonance condition and can commonly triple the 

polarization. An analysis with average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between 
hydrides and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment, combined with 

simulations and experiment, show substantial magnetization improvements relative to traditional X-SABRE methods. It also shows that, in 

contrast to most pulse sequence applications, waveforms with reduced time symmetry in the toggling frame make magnetization 

generation more robust to experimental imperfections.  
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Higher-order Average Hamiltonian of AA’B System 

In the theoretical section of the article, we ignore the higher-order approximation of the average Hamiltonian[1,2] and only discuss the zero-

order Magnus expansion. Here, we will correct this omission. The first and second orders of the Magnus expansion are given by  

 

ℋ̃(1)

=
1

2𝑖𝑇
∫ 𝑑𝑡1

𝑇

0

∫ 𝑑𝑡2

𝑡1

0

[ℋ̃(𝑡1), ℋ̃(𝑡2)]                                                                                                                                                                                     (S1) 

 

ℋ̃(2) =
1

6𝑇
∫ 𝑑𝑡1

𝑇

0

∫ 𝑑𝑡2

𝑡1

0

∫ 𝑑𝑡3

𝑡2

0

{[ℋ̃(𝑡1), [ℋ̃(𝑡2), ℋ̃(𝑡3)]

+ [[ℋ̃(𝑡1), ℋ̃(𝑡2)], ℋ̃(𝑡3)]}                                                                                                  (S2) 

 

In the square pulse and the sine wave cases, since ℋ̃(𝑡) is symmetric, ℋ̃(𝑡) = ℋ̃(𝑇 − 𝑡) for any 0 ≤ 𝑡 ≤ 𝑇 , all odd order Magnus 

expansions are zero. Here, we give the commutation relation of [ℋ̃(𝑡1), ℋ̃(𝑡2)] and [[ℋ̃(𝑡1), ℋ̃(𝑡2)], ℋ̃(𝑡3)], based on which ℋ̃(1) and 

ℋ̃(2) can be calculated with integral computations. 
 

[ℋ̃(𝑡1), ℋ̃(𝑡2)] =
𝑖

2
∆𝜔0𝐽𝐻𝐿{(𝑀(𝑡1) − 𝑀(𝑡2))(𝐼1𝑥�̂�𝑦 − 𝐼1𝑦�̂�𝑥)

+ (𝑁(𝑡1) − 𝑁(𝑡2))(𝐼1𝑥�̂�𝑥 + 𝐼1𝑦�̂�𝑦)}                                                                           (S3) 

+
𝑖

2
𝐽𝐻𝐻𝐽𝐻𝐿(𝑀(𝑡1) − 𝑀(𝑡2)){𝐼1𝑧(𝐼2𝑥�̂�𝑦 − 𝐼2𝑦�̂�𝑥) + 𝐼2𝑧(𝐼1𝑦�̂�𝑥 − 𝐼1𝑥�̂�𝑦)}

+
𝑖

2
𝐽𝐻𝐻𝐽𝐻𝐿(𝑁(𝑡1) − 𝑁(𝑡2)){𝐼1𝑧(𝐼2𝑥�̂�𝑥 + 𝐼2𝑦�̂�𝑦) − 𝐼2𝑧(𝐼1𝑥�̂�𝑥 + 𝐼1𝑦�̂�𝑦)} 

+𝑖𝐽𝐻𝐿
2 (𝑀(𝑡1)𝑁(𝑡2) − 𝑁(𝑡1)𝑀(𝑡2))(𝐼1𝑧 − �̂�𝑧) 

 

[[ℋ̃(𝑡1), ℋ̃(𝑡2)], ℋ̃(𝑡3)]

= 𝐽𝐻𝐿 {(
(∆𝜔0)2

4
+

𝐽𝐻𝐻
2

2
) (𝑀(𝑡1) − 𝑀(𝑡2)) + 𝐽𝐻𝐿

2 (𝑀(𝑡1)𝑁(𝑡2) − 𝑁(𝑡1)𝑀(𝑡2))𝑁(𝑡3)} (𝐼1𝑥�̂�𝑥

+ 𝐼1𝑦�̂�𝑦)                         (S4) 

+𝐽𝐻𝐿 {(
(∆𝜔0)2

4
+

𝐽𝐻𝐻
2

2
) (𝑁(𝑡2) − 𝑁(𝑡1)) + 𝐽𝐻𝐿

2 (𝑀(𝑡1)𝑁(𝑡2) − 𝑁(𝑡1)𝑀(𝑡2))𝑀(𝑡3)} (𝐼1𝑥�̂�𝑦 − 𝐼1𝑦�̂�𝑥) 

+
∆𝜔0

2
𝐽𝐻𝐻𝐽𝐻𝐿(𝑀(𝑡1) − 𝑀(𝑡2)) (𝐼1𝑧(𝐼2𝑥�̂�𝑥 + 𝐼2𝑦�̂�𝑦) − 𝐼2𝑧(𝐼1𝑥�̂�𝑥 + 𝐼1𝑦�̂�𝑦)) 

+
∆𝜔0

2
𝐽𝐻𝐻𝐽𝐻𝐿(𝑁(𝑡1) − 𝑁(𝑡2)) (𝐼1𝑧(𝐼2𝑥�̂�𝑦 − 𝐼2𝑦�̂�𝑥) + 𝐼2𝑧(𝐼1𝑦�̂�𝑥 − 𝐼1𝑥�̂�𝑦)) 

+ (
𝐽𝐻𝐻

2
−

𝐽𝐻𝐿

4
) 𝐽𝐻𝐻𝐽𝐻𝐿{(𝑀(𝑡2) − 𝑀(𝑡1))(𝐼2𝑥�̂�𝑥 + 𝐼2𝑦�̂�𝑦) + (𝑁(𝑡2) − 𝑁(𝑡1))(𝐼2𝑦�̂�𝑥 − 𝐼2𝑥�̂�𝑦)} 

+
𝐽𝐻𝐻(𝐽𝐻𝐿)2

4
{(𝑀(𝑡2) − 𝑀(𝑡1))𝑀(𝑡3) − (𝑁(𝑡2) − 𝑁(𝑡1))𝑁(𝑡3)}(𝐼1𝑥𝐼2𝑥 + 𝐼1𝑦𝐼2𝑦 + 2𝐼1𝑧𝐼2𝑧 − 2𝐼2𝑧�̂�𝑧) 

+
𝐽𝐻𝐻(𝐽𝐻𝐿)2

4
{(𝑁(𝑡2) − 𝑁(𝑡1))𝑀(𝑡3) − (𝑀(𝑡2) − 𝑀(𝑡1))𝑁(𝑡3) + 2(𝑀(𝑡1)𝑁(𝑡2) − 𝑁(𝑡1)𝑀(𝑡2))}(𝐼1𝑥𝐼2𝑦 − 𝐼1𝑦𝐼2𝑥) 

 

However, to visualize the effect of the higher order average Hamiltonian, we plot how each matrix element varies with the pulse period T 

in Figure S1. The pulse period T should not be too long in most SABRE[3-6] systems with reasonable exchange rate (usually ≤ 50s−1), 
otherwise the SABRE complex only experiences a constant high magnetic field during its lifetime. Therefore, we are only interested in pulse 

periods that are smaller or comparable to the lifetime of SABRE complex. For the sake of conciseness, here we only study one highly 

symmetric pulse, square pulse, and one less symmetric pulse--ramp. In addition, we only display the result of one subspace which is 

displayed in Figure S1; the other one has similar behavior. Since we only calculated the first and second order approximation, all the curves 
refer to the subspace of ℋ̃(1) + ℋ̃(2). In the zero-order case, only the non-secular matric elements which connect the 𝛼𝐿 states and 𝛽𝐿  

states are altered, and the resulting 𝑀s and 𝑁s are identical. However, for the higher orders, diagonal elements are tuned as well, which 

is caused by the term 𝐼1𝑧 − �̂�𝑧 in the first order average Hamiltonian and the term 2𝐼1𝑧𝐼2𝑧 − 2𝐼2𝑧�̂�𝑧 in the second order (see equation (3) 

and (4)). Moreover, the 𝑀s and 𝑁s diverge in the higher order approximation. However, it is obvious that higher order average Hamiltonian 
are too small to rise obvious function (Figure S1). In conclusion, the zero order Magnus expansion is indeed a reliable approximation of the 

whole average Hamiltonian. 
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Figure S1. Plot of matrix elements in the effective Hamiltonian for a square pulse sequence (top) and ramp pulse sequence (bottom). The left and the right 

subplot column indicate how the three diagonal elements (left) and the adjustable coefficents M and N (right) change with the pulse period T. In all cases 

the dotted lines represent the zero order results while the full curves correspond to all  higher orders (full numerical solution minus zero order). Because 

the higher order terms are almost always at least two orders of magnitude smaller than their zero-order counterparts, they are neglected in our theoretical 

analysis.   

 

 

 

 

M and N of a symmetric triangle pulse  

In the article, we conclude that for an oscillating pulse which is symmetric 

both about the center of each repeating interval and the center of each half 

cycle, its corresponding 𝑀0  and 𝑁0  inevitably vanish together. Here, we 
provide a further verification by calculating one more example, a symmetric 

triangle pulse. Figure S2 shows how the curves of 𝑀0, 𝑁0 and √𝑀0
2 + 𝑁0

2  of 

a symmetric triangle pulse vary as a function of 𝜃 (the rotation angle in half 

a period), respectively. The offset field is fixed at −0.13𝜇𝑇. When 𝜃 = (2𝑛 +
1)𝜋, 𝑀0 = 0, and when 𝜃 = 2𝑛𝜋, 𝑁0 = 0. Somewhere between (2𝑛 − 1)𝜋 

and 2𝑛𝜋, 𝑀0 and 𝑁0 vanish together. All of the above features agree with 

the analysis and proof given in the theory section of the article. Not that this 

triangle pulse gives 𝑀0  and 𝑁0  behaviors which are quite different from 
those of the Ramp pulse and nearly the same as those of the sine wave and 

square pulse, which indicates that the symmetry plays the key role.  

 

 

Figure S2. A depiction of how M0 (red curve), N0 (blue curve) and 

√𝑀0
2 + 𝑁0

2 (black dotted curve) of the symmetric triangle pulse 
vary as a function of the rotation angle in half a period, 
respectively. We maintain the offset field at −0.13𝜇𝑇.  
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Validity of Level Anti-crossings 

Level anti-crossings[7,8] are a useful tool in many spectroscopic applications. For the last decade, they have been widely used in SABRE 

system to predict or explain the optimal magnetic field used in SABRE experiments. In the article we show that LAC works properly for our 

oscillating pulse SABRE-SHEATH[5, 6] even though it does not for CW SABRE-SHEATH[11]. Here, to support our conclusion we introduce a 
new model – a AA’B system with the coupling between the two hydrides being positive, JHH = 8Hz, while JHL = −25Hz stays unchanged. 

A square pulse with amplitude B = 10µT is applied the spin system. Figure S3(a) depicts how polarization varies with both the offset field 

and the pulse period, in which the optimal offset field is about ±0.38μT. Figure S3(b) displays the LACs of one 3 × 3 subspace with pulse 

period being fixed at the optimal value, 3.6ms, and the offset field changing from 0 to 0.4μT. The circled LAC at 𝐵0~0.37𝜇𝑇 agrees greatly 
with the optimal offset field. Therefore, the validity of LACs in Oscillating Pulse SABRE-SHEATH is verified again. 

 

Zero-order Average Hamiltonian of AA’BB’ system 

In the paper we demonstrated that the oscillating pulse makes the coupling between hydrides and target nuclei are adjustable in the case 

of 3-spin system AA’B. Here we extend this conclusion to symmetric AA’BB’ system. The original full Hamiltonian of the 4-spin system 

experiencing an unbalanced squared pulse is  

 

ℋ̃𝑝𝑟𝑖𝑚𝑒(𝑡) = −(𝐵0 + 𝐵(𝑡))(𝛾𝐻(𝐼1𝑧 + 𝐼2𝑧) + 𝛾𝐿(�̂�1𝑧 + �̂�2𝑧)) + 2𝜋𝐽𝐻𝐻(𝐼1 ∙ 𝐼2) + 2𝜋𝐽𝐻𝐿(𝐼1 ∙ �⃑⃑�1) + 2𝜋𝐽𝐻𝐿(𝐼2 ∙ �⃑⃑�2)                                                   (S5) 

 

In the same way as the 3-spin case, we rearrange the formula in the following 
 

ℋ̃𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑(𝑡) = −(𝐵0 + 𝐵(𝑡))𝛾𝐻(𝐼1𝑧 + 𝐼2𝑧 + �̂�1𝑧 + �̂�2𝑧) + (∆𝜔0 + ∆𝜔(𝑡))(�̂�1𝑧 + �̂�2𝑧) + 2𝜋{𝐽𝐻𝐻(𝐼1 ∙ 𝐼2) + 𝐽𝐻𝐿(𝐼1 ∙ �⃑⃑�1) + 𝐽𝐻𝐿(𝐼2 ∙ �⃑⃑�2)}    (S6) 

 

in which ∆𝜔0 = 𝐵0(𝛾𝐻 − 𝛾𝐿) , and ∆𝜔(𝑡) = 𝐵(𝑡)(𝛾𝐻 − 𝛾𝐿) . Similarly, simplify the Hamiltonian by taking out the first term which 

commutes with the rest of the Hamiltonian.  
 

ℋ̃(𝑡) = (∆𝜔0 + ∆𝜔(𝑡))(�̂�1𝑧 + �̂�2𝑧) + 2𝜋{𝐽𝐻𝐻(𝐼1 ∙ 𝐼2) + 𝐽𝐻𝐿(𝐼1 ∙ �⃑⃑�1) + 𝐽𝐻𝐿(𝐼2 ∙ �⃑⃑�2)}                                                                                                      (S7) 

 

Transfer this Hamiltonian to the toggling frame 𝑈(𝑡) = exp (−𝑖(�̂�1𝑧 + �̂�2𝑧) ∫ ∆𝜔(𝑡′)
𝑡

0
𝑑𝑡′) 

 

ℋ̃ = 𝑈{∆𝜔0(�̂�1𝑧 + �̂�2𝑧) + 2𝜋𝐽𝐻𝐻(𝐼1 ∙ 𝐼2) + 2𝜋𝐽𝐻𝐿(𝐼1 ∙ �⃑⃑�1) + 2𝜋𝐽𝐻𝐿(𝐼2 ∙ �⃑⃑�2)}𝑈†                                                                                                              (S8)  

= ∆𝜔0(�̂�1𝑧 + �̂�2𝑧) + 2𝜋𝐽𝐻𝐻(𝐼1 ∙ 𝐼2) + 2𝜋𝐽𝐻𝐿 (𝐼1𝑧�̂�1𝑧 + 𝑀(𝑡)(𝐼1𝑥�̂�1𝑥 + 𝐼1𝑦�̂�1𝑦) + 𝑁(𝑡)(𝐼1𝑥�̂�1𝑦 − 𝐼1𝑦�̂�1𝑥)) 

+ 2𝜋𝐽𝐻𝐿 (𝐼2𝑧�̂�2𝑧 + 𝑀(𝑡)(𝐼2𝑥�̂�2𝑥 + 𝐼2𝑦�̂�2𝑦) + 𝑁(𝑡)(𝐼2𝑥�̂�2𝑦 − 𝐼2𝑦�̂�2𝑥))      

 

Since there are two target nuclei in every SABRE complex, and each one couples with one of the two hydrides, these two couplings are 

adjusted identically by the oscillation pulse. The time dependent coefficients are 𝑀(𝑡) = cos (∫ ∆𝜔(𝑡′)
𝑡

0
𝑑𝑡′) , and 𝑁(𝑡) =

sin(∫ ∆𝜔(𝑡′)
𝑡

0
𝑑𝑡′), which are the same with the 3-spin case. Therefore, the zero-order average Hamiltonian is easy to work out.  

 

Figure S3. Experimental optimum agrees with the prediciton of LAC. The square pulse we use has a stable amplitude 10𝜇𝑇 while changing offset and pulse 
period. (a) displays polarizaiton as a funtion of both offset and pulse period. The optimal offset and the optimal pulse period are 𝐵0 = ±0.38𝜇𝑇, 𝑇 = 3.6𝑚𝑠. 
(b) is the corresponding LACs of one of the 3 × 3 subspaces. The circle LAC occurs near 𝐵0~0.37𝜇𝑇. 
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ℋ̃(0) = ∆𝜔0(�̂�1𝑧 + �̂�2𝑧) + 2𝜋𝐽𝐻𝐻(𝐼1 ∙ 𝐼2) + 2𝜋𝐽𝐻𝐿 (𝐼1𝑧�̂�1𝑧 + 𝑀0(𝐼1𝑥�̂�1𝑥 + 𝐼1𝑦�̂�1𝑦) + 𝑁0(𝐼1𝑥�̂�1𝑦 − 𝐼1𝑦�̂�1𝑥))                                                          (S9)

+ 2𝜋𝐽𝐻𝐿 (𝐼2𝑧�̂�2𝑧 + 𝑀0(𝐼2𝑥�̂�2𝑥 + 𝐼2𝑦�̂�2𝑦) + 𝑁0(𝐼2𝑥�̂�2𝑦 − 𝐼2𝑦�̂�2𝑥))               

where 𝑀0 =
sin (∆𝜔𝑇/2)

∆𝜔𝑇/2
 and 𝑁0 =

1−cos(∆𝜔𝑇/2)

∆𝜔𝑇/2
. If ∆𝜔𝑇/2 = 2𝑛𝜋 , the coupling 

between hydride and the target nulcei vanish. Therefore, the resulting polarization 
is zero, as what is shown in Figure S4, along the vertical line of 𝑇 = 4.3𝑚𝑠 the offset 
field 𝐵0 and the pulse period T are scanned to figure out the optimal condition which 
is 𝐵0 = −0.16𝜇𝑇, and 𝑇 = 4𝑚𝑠, while the pulse amplitude B is pinned at 10𝜇𝑇. 
Compared with the 3-spin system, the optimal offset shifted a little bit which is 
caused by the different spin construction of the SABRE complex, but the optimal 
pulse period stays the same since 𝐽𝐻𝐿 is tuned identically in both 3-spin and 4-spin 
cases. The subspaces of the average Hamiltonian associated with spin transfer are 
displayed in equation (S13). The basis used here is a singlet-triplet basis for both the 
AA‘ pair and the BB‘ pair. The couplings between the states of the target spins with 

respect to zero spin angular momentum projection ( 𝑆𝐿
0, 𝑇𝐿

0 ) and states with a 
nonzero projection are adjustable. This fact is significant becasue the population 
transfer between these states, which is directly affected by the coupling strength, 

generates polarization, while the coupling between states 𝑆𝐿
0  and 𝑇𝐿

0  stays 
unchanged, and the coupling between states 𝑇𝐿

+ and 𝑇𝐿
− is always zero. 

( )

( )

( )

( )

0 0 0

0

0 0

0 0
0 0 0

0 0

0

0 0

0
0 0 0

0 0 0 0

0 0
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+
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−
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− + − + − 
 

                                                        (S10) 

 

 

 

 

 

 

Figure S4. Polarization of a AA’BB‘ system under an 
unbalanced square pulse varies as the pulse period and 
the offset field. We hold the pulse amplitude,𝐵 = 10𝜇𝑇, 
and the accordingly optimal condition is 𝐵0 = −0.16𝜇𝑇, 
and 𝑇 = 4𝑚𝑠. Simulation parameters: coupling strength 
𝐽𝐻𝐻 = −8𝐻𝑧,  𝐽𝐻𝐿 = −25𝐻𝑧, exchange rates 𝑘𝐿 = 24𝑠−1, 
𝑘𝐻 = 8𝑠−1, [catalyst]:[ligand]=1:10. 
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Robustness to variations of exchange rate 

In the article we have already confirmed that the 3-spin system with negative  𝐽𝐻𝐻 is robust to variations of exchange rate. In this section 

we demonstrate with DMEx[12] simulation method that the positive  𝐽𝐻𝐻 case and 4-spin systems also have strong robustness to variations 

in exchange rate. Likewise, we use a square pulse sequence with 𝐵 = 10𝜇𝑇 as an example. The optimal magnetic field of the AA’B system 
with 𝐽𝐻𝐻 = 8𝐻𝑧 is ±0.4𝜇𝑇, while for the AA’BB’ system with 𝐽𝐻𝐻 = −8𝐻𝑧 the optimal filed is ±0.11𝜇𝑇. In Figure S5, we study 4 different 

cases with 𝑘𝐿  changing from 1𝑠−1 to 100𝑠−1, but the optimal field does not obviously shift. The optimal conditions do not shift a lot in the 

low exchange cases. As the exchange rate of the substrate goes up, the optimal condition shifts in the direction that the offset increases 

while the pulse period decreases. However, the overall shift is mild. All the feature are consistent with the 3-spin case shown in the article 
(Figure 8).  
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Figure S5. Optimal polarization conditions with different substrate exchange rates. The left four subplots refer to an AA’B spin system with a positive hydride 
coupling, 𝐽𝐻𝐻 = 8𝐻𝑧, while the right four refer to an AA’BB’ spin system with a negative hydride coupling, 𝐽𝐻𝐻 = −8𝐻𝑧. (a1) The optimal field is -0.37µT, 
and the optimal period is 3.8ms. (b1) The optimal field is -0.37µT, and the optimal period is 3.8ms. (c1) The optimal field is -0.4µT, and the optimal period 
is 3.8ms. (d1) The optimal field is -0.44µT, and the optimal period is 3.8ms. (a2) The optimal field is -0.11µT, and the optimal period is 4.0ms. (b2) The 
optimal field is -0.17µT, and the optimal period is 4.0ms. (c2) The optimal field is -0.21µT, and the optimal period is 4.0ms. (d2) The optimal field is -0.5µT, 
and the optimal period is 3.8ms. The subplots have inconsistent color scales in order to show off more detail. Simulation parameters: coupling strength  
𝐽𝐻𝐿 = −25𝐻𝑧,  [catalyst]:[ligand]=1:10. 
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