Supplementary Information for

Decomposition of multifunctionalized α -alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases

Yasuyuki Endo^a, Yosuke Sakamoto^{abc}, Yoshizumi Kajii^{abc} and Shinichi Enami*^c

^a Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
^b Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan

^c National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan

*Author to whom correspondence should be addressed: enami.shinichi@nies.go.jp, telephone: +81-29-850-2770

No. of Supporting Pages: 8

No. of Supporting Figures: 7

Figure S1 – Schematic setup of present experiment.

Fig. S2. Upper panel) Negative-ion mass spectra of mixtures obtained by ozonolysis $([O_3]_0 = 0.06 \pm 0.01 \text{ mM})$ of α -terpineol (1 mM)/NaCl (0.2 mM) in 1,3-propanediol:H₂O (1:1 = vol:vol) solution at pH 5.1 and $T = 299 \pm 1$ K. Lower panel) The signal intensity at m/z 313 (C₁₃ α -AHs) as a function of time.

Fig. S3. Upper panel) Negative-ion mass spectra of mixtures obtained by ozonolysis $([O_3]_0 = 0.06 \pm 0.01 \text{ mM})$ of α -terpineol (1 mM)/NaCl (0.2 mM) in 1,4-butanediol:H₂O (1:1 = vol:vol) solution at pH 4.5 and $T = 299 \pm 1$ K. Lower panel) The signal intensity at m/z 327 (C₁₄ α -AHs) as a function of time.

Fig. S4. Negative-ion mass spectra of mixtures obtained by ozonolysis ($[O_3]_0 = 0.06 \pm 0.01$ mM) of α -terpineol (1 mM)/NaCl (0.2 mM)/HCl (0.05 mM) in 1,5-pentanediol:D₂O (1:1 = vol:vol) solution at pD = 5.8 at *T* = 299 ± 1 K.

Fig. S5 Temporal profiles of the Cl⁻ adducts of the α -AHs (m/z 341) generated by ozonolysis of (1 mM α -terpineol and 0.2 mM NaCl) at $[O_3]_0 = 0.06 \pm 0.01$ mM in a 1,5-pentanediol:water (1:1 = vol:vol) solution in the absence (blue circles) or presence of 0.05 mM H₂O₂ (red triangles) at $T = 299 \pm 1$ K acidified by 0.05 mM to pH 4.5. Background signals obtained from mass spectra in the absence of O₃ were subtracted. Lines indicate fits of signal intensities (*S*) to single-exponential functions with baselines.

Fig. S6. Arrhenius plot of the rate coefficients for decay of the C₁₃ α -AHs generated by ozonolysis of α -terpineol/NaCl in 1,3-propanediol:water (1:1) at pH 4.5. Note the error bars (= SDs) are obscured by the symbols in some cases. The linear regression yielded a preexponential factor (*A*) of 6.0 × 10⁸ s⁻¹ (ln *A* = 20.2 ± 1.3) and an *E*_a value of 15.7 ± 0.8 kcal mol⁻¹.

Fig. S7. Arrhenius plot of the rate coefficients for decay of the C₁₄ α -AHs generated by ozonolysis of α -terpineol/NaCl in 1,4-butanediol:water (1:1) at pH 4.5. The linear regression yielded a preexponential factor (*A*) of 2.0 × 10⁸ s⁻¹ (ln *A* = 19.1 ± 4.1) and an E_a value of 15.0 ± 2.4 kcal mol⁻¹.