Supplementary material

CsPbBr₃ Microarrays with Tunable Periodicity, Optoelectronic and Field Emission Properties Using Self-Assembled Polystyrene Template and Co-Evaporation Method

ChunWei Zhou^{1#}, Yu Huang^{1#}, YinLong Zhang¹, Bin Lu², YiFeng Xu¹, QuanLin Ye¹, XuXin Yang^{1*}, JianQiang Zhong¹, JianXin Tang^{1,3*}, HongYing Mao^{1*}

- ¹ School of Physics, Hangzhou Normal University, Hangzhou 311121, P. R. China
- ² State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- ³ Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Centre of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, Jiangsu, Peoples R China

[#]C.W. Zhou and Y. Huang contributed equally to this work.

* Corresponding Author: xxyang@hznu.edu.cn (X.X. Yang), jxtang@suda.edu.cn (J.X. Tang) and phymaohy@hznu.edu.cn (H.Y. Mao)

Figure S1. Morphologies of 80 nm compact CsPbBr₃ films on bare Si. (a) SEM image. (b) AFM $(5 \times 5 \ \mu m)$ image.

Figure S2. SEM cross-section images of 80 nm (a) compact CsPbBr₃ films and microarrays with tunable periodicity (b: 1µm, c: 350 nm, d: 150 nm).

Figure S3. SEM-EDS spectrum of CsPbBr₃ microarrays on self-assembled PS nanospheres with diameters of 150 nm.

Figure S4. XPS spectra for (a) Cs 3d, (b) Pb 4f and (c) Br 3d of CsPbBr₃ microarray on self-assembled PS nanospheres with diameters of 150 nm, respectively.

Figure S5. Surface potential distribution and cross-section profiles of (a) 80 nm compact CsPbBr₃ films on bare Si, and (b) CsPbBr₃ microarrays on self-assembled PS nanospheres (150 nm). The insets show the corresponding AFM images ($5 \times 5 \mu m$).

Figure S6. XRD patterns of compact CsPbBr₃ films and microarrays with tunable periodicity.

Figure S7. (a) Absorption spectra and (b) corresponding plot of the $(\alpha h \upsilon)^2$ versus h υ of 80 nm compact CsPbBr₃ films and microarrays with tunable periodicity.

Figure S8. Absorption spectra of (a) the PS template with the periodicity of 1 μ m and (b) 500 nm compact CsPbBr₃ films and microarrays with tunable periodicity.

Figure S9. Schematic structure of CsPbBr3 microarrays based field emission device.

Figure S10. J-E curve of self-assembled PS nanospheres (150 nm) on Si.

Figure S11. UPS spectra of compact CsPbBr₃ films at the low (a) kinetic energy and (b) binding energy region, respectively.

Figure S12. (a) *J-E* curve and (b) corresponding F-N plots of 80 nm compact CsPbBr₃ films and microarrays on self-assembled PS nanospheres (150 nm)/graphite.

Figure S13. SEM images of self-assembled PS nanospheres on graphite (a) - (b) before and (c) after the formation of CsPbBr₃ microarrays.