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S.1 Electronic and phonon structure
The non-interacting wave-functions ψ0

nk and eigenvalues ε0
nk are determined self-consistently from the

Kohn-Sham (KS)1 equation in density functional theory (DFT)2,

[T + vext(r)+ vH [ρ(r)] +vXC[ρ(r)]]ψ0
nk(r) = ε

0
nkψ

0
nk(r) (S.1.1)

where ρ(r) = ∑nk fnk|ψ0
nk(r)|2 is the electronic density. Inside the brackets the first term is the kinetic

energy operator and the other terms constitutes the KS potential, vKS, composed of (from left to right):
the external potential, the Hartree energy potential, and the exchange-correlation potential.

DFPT is used to calculate the interatomic forces constants, which are the second derivative of the
total energy with respect to atomic displacements. The phonon frequencies ω jq and the eigendis-
placements U jq are thus obtained as solutions of the generalized eigenvalue problem3 involving the
dynamical matrix C(q),

∑
κ ′β

Cκα,κ ′β (q)U jq(κ
′
β ) = Mκω

2
jqU jq(κα) (S.1.2)

where M is the atomic mass, κ and κ ′ are the index of the ions in the unit cell, j is the phonon mode,
and α and β are the Cartesian directions. The e-ph matrix elements are derived from the first order
variation of the KS potential, and given by

g jq
nmk =

∫
dr
(
ψ

0
nk+q(r)

)∗ eiq·r√
2ω jq

×∑
κα

Uκα, j(q)√
Mκ

(
∂κα,qvKS(r)

)
ψ

0
mk(r). (S.1.3)

The first-order derivative of vKS is obtained by solving self-consistently a system of Sternheimer
equations. All these calculations give us the quantities necessary to compute the e-ph self-energy.
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S.2 Computational details
We performed calculations for the KS band structure using the LDA approximation4,5. Core electrons
were taken into account using a norm-conserving pseudopotential6. The electronic wave functions
were expanded in plane-wave basis set with an energy cutoff of 40 Ha. Phonon properties together
with the e-ph scattering potentials were calculated by means of DFPT and a 8× 8× 8 grid both for
electrons and phonons. Then we performed MBPT calculations to determine the e-ph correction to
the initial LDA electronic structure. ABINIT7,8 was used for all the calculations.

Diamond atoms have tetrahedral geometry and bond via sp3 hybrid orbitals. There are two atoms
per unit cell, with a relative displacement of (1/4,1/4,1/4)a, where a is the lattice parameter. The
unit cell of diamond is shown in Fig. S.2.1. The relaxed structure has a = 3.575 Å, differing by 0.16%
from the experimental value9. The calculated fundamental band gap of diamond is 4.173 eV and the
direct band gap is 5.610 eV. Calculations at the LDA level are known to underestimate the band gap,
in this case, the errors are around 24% and 21%, respectively10.

The phonon band structure is shown in Fig. S.2.2. Although there is no LO-TO splitting since
diamond is not polar, we refer to the largest phonon frequency at Γ as ωLO (163 meV).

The convergence of the phonon energy with respect to the initial DFPT q-grid show a maximum
of 0.04 meV for a size of 8× 8× 8. A denser q-mesh does not affect much the spectral function for
CBM at the examined temperatures of 300, 900 and 1500 K. However, further convergence might be
needed for transport properties11.

Figure S.2.1 The conventional 8 atom cubic unit cell of diamond. The calculations were done using 2 atoms in a
face-centred cubic primitive unit cell.
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Figure S.2.2 The phonon band structure (left) and density of states (right) of diamond obtained by
Fourier-interpolating the dynamical matrix evaluated on a 8×8×8 q-grid.

S.3 Kramers-Kronig

Figure S.3.1 βCBM(ω) using a 64×64×64 k- and q-grid with a total of 650 bands. For this calculation, the
infinitesimal number η is of 10 meV.
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Figure S.3.2 The integration of βCBM(ω)/ω (βCBM(ω) from Fig. S.3.1) between −ωl and ωl (∆ω) converges at a
large value of ∆ω , of about 700 eV. The converged value corresponds to the real part of the Fan self-energy at
ω = ε0

CBM due to the Kramers-Kronig (KK) relation, Eq. (S.3.1). To reduce the computational cost, one can just
use KK and avoid the numerical integration of the βCBM(ω)/ω term in Eq. (9).

Figure S.3.3 Convergence of ℜeC̃(t = 0.1ps) at the CBM, from Eq. (S.3.2), with respect to the frequency
integration range ∆ω . There is a convergence of 0.001 at ∆ω = 22 eV, which corresponds to 8 bands, and the
imaginary part is converged already at ∆ω = 8 eV. The inset shows ℜeC̃(t) for different integration ranges. The lines
with a decreasing y-intercept are calculated for frequency ranges ∆ω increasing by 2 eV, from 8 eV and 32 eV, which
yields a converging rigid shift of ℜeC̃(t).
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Converging the ω-integral in Eq. (9) requires a very large integration range. In Fig. S.3.1 we can see
that the imaginary part of the self-energy does not have a small support of ω around εnk, but continues
to increase up to about 400 eV, and does not go to 0 until values well over 700 eV. In addition, one of
the the cumulant terms,

∫
β/ωdω, has a factor 1/ω rather than 1/ω2, which makes convergence very

slow. In fact, Fig. S.3.2 shows that ∆ω =800 eV is needed to converge the integral with an accuracy
of 0.01 eV, which corresponds to about 630 bands. This can be avoided by using the Kramers-Kronig
(KK) relation,

ℜeΣ
Fan
nk (εnk) =−P

∫
∞

∞

βnk(ω)

ω
dω. (S.3.1)

where P indicates the Cauchy principal value. Using this analytical result, the numerical integration
of the 1/ω term is completely avoided. In this way, we can write

Cnk(t) =−itℜeΣ
Fan
nk (εnk)+P

∫
∞

−∞

βnk(ω)
e−iωt−1

ω2 dω

=−itℜeΣ
Fan
nk (εnk)+C̃nk(t),

(S.3.2)

which is the expression used in our calculations. On the other hand, C̃(t) at t = 0.1 ps is converged by
integrating up to 15 eV (see Fig. S.3.3), which requires the explicit calculation of only 9 bands. For
larger values of t, the range of energy is even smaller.

The issue of converging the cumulant has now been reduced to converging the real part of the
self-energy in Eq. (S.3.2), given by Eq. 3. In principle, this also requires calculating many bands
to converge the sum m. However, calculating the self-energy is now a standard tool in ABINIT and
other first-principles codes, where the sum over bands is usually avoided by using the Sternheimer
approximation.
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S.4 Sternheimer approximation

Figure S.4.1 CBM self-energy. Top: Real part at the KS energy as a function of the number of explicit bands M. At
M = 6 it is already well converged, explicitly showing that the phonon frequencies play only a small role when energy
denominators are large. Bottom: Imaginary part of the self energy, as a function of frequency, for different number
of bands. Since the imaginary part is not 0 only if ω− εn′k+q±ωqs = 0, values agree in the whole range as soon as
at least one band is added above 4 eV.

Converging the calculation of the e-ph self-energy requires the inclusion of many empty states. This
can be circumvented by using Eqs. (26)-(31) in Ref. 12 , in which the sum for n′>M can be replaced by
the numerical solution of the Sternheimer equation. Obtaining the self-energy in this way corresponds,
for m > M in Eq. (3), to setting ω = εnk (which is precisely what is needed in Eq. (S.3.1)) and dropping
the phonon frequencies ωqs in the denominators. Energy differences εnk−εn′k+q are much larger than
ωqs, even for m not much larger than n, so dropping the phonon frequencies has virtually no effect.

In Fig. S.4.1, we can see that by using the Sternheimer approximation, ℜeΣFan
nk (ω = εnk) is con-

verged by summing explicitly over only 6 bands. In the previous section, we obtained that more
bands, 9, are needed to converge C̃ in Eq. (S.3.2), so the method is fully converged by determining
only 9 bands of the self-energy. For the VBM, a similar amount of bands are needed.

Regarding the frequency dependence (dynamical effects) of the self-energy, the Sternheimer ap-
proximation implies that it is not included for m > M. However, if the real part of the self-energy is
evaluated close to εnk, such that |ω − εnk| � |ω − εn′k+q|, then this is also a good approximation. For
the imaginary part, contributions come from ω−εn′k+q±ωqs = 0, so as long as ω takes values slightly
lesser than those of the m > M bands, the approximation has no effect, and the spectral function can
be accurately determined. Therefore, by using KK, the Sternheimer approximation can be safely used
by calculating explicitly the bands up to m≤M, for a small value of M.
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S.5 Self-Energy details
The inverse of the Dyson-Migdal equation, eq. 4, is given by

Σnk(ω;T ) =
1

G(0)
nk (ω)

− 1
Gnk(ω;T )

. (S.5.1)

There is a distinct decay between G0 and the CE calculated G at large ω, which can be seen in Fig.
S.5.1. The Fourier Transform used for CE method forces G to zero in the frequency numerical limits
and this disparity produces a divergence in Σ as G tends to zero, Fig. S.5.2. Nevertheless, close to the
KS energy between -2.0 and 2.0 eV, see Fig. S.5.3, where G and G0 are close to each other and far
from 0 by ± 0.5 (Fig. S.5.1), the DM and CE self-energies are within the same range of energies. The
real part of the self-energy between the QP line (diagonal solid black line) and the plateau energy line
(diagonal dashed black line) seems to begin or continue, depending on the temperature, a descending
behaviour. However, reaching to a distance of ωLO the descent stops and leads to a plateau. This is at
variance with polar materials, where at ωLO the real part of the self-energy diverges.

Figure S.5.1 Calculated Green’s functions in the frequency domain at CBM. In blue, the total CE Green’s function
and in orange the non-interacting particle Green’s function. The latter has a slower decay to zero (as 1/ω) than the
former. As the CE G is constructed by Fourier transform, it must be periodic and goes to 0 at the edge of the
chosen frequency interval (around ±8 eV).
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Figure S.5.2 The real (solid) and imaginary (dashed) parts of the self-energy for DM (green) and CE (red) at the
CBM. The CE self-energy is calculated as the difference of the inverses of the CE and non-interacting Green’s
functions, and diverges with increasing ω due to the distinctive decay (faster than 1/ω) of the CE Green’s function,
Fig. S.5.1.

Figure S.5.3 Real part of the self-energy at 300 (blue), 900 (orange), and 1500 (green) K, both for CE (solid) and
DM (dashed) calculations at the CBM. The diagonal solid black line shows ω = ℜeΣ(ω), corresponding to Eq.
(13), with ε0

CBM set to zero, and intersections with ℜeΣ(ω) yield the QP energy peaks. The diagonal dashed black
line is shown at a distance of ωLO from the QP line. The vertical dashed line is set to ωLO from ε0

CBM. Both dashed
black lines highlight the position of the satellite plateau structure, which is physical only in the CE case.

S.6 Spectral function and ARPES
S.6.1 Energy values
Energy values corresponding to Figs. 10 and 11 of the main text are compiled in Table S.6.1.
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State CBM VBM
Temperature (K) 300 900 1500 300 900 1500

ℜeΣDW
nk (ε0

nk) 0.659 1.148 1.779 1.974 3.440 5.333
ℜeΣFAN

nk (ε0
nk) -0.862 -1.430 -2.182 -1.841 -3.188 -4.867

ℜeΣnk(ε
0
nk) -0.203 -0.282 -0.403 0.134 0.252 0.466

ℑmΣnk(ε
0
nk) −1.5×10−4 −3.5×10−3 −9.4×10−3 −1.1×10−3 −3.9×10−2 −1.1×10−1

εDM−OMS -0.203 -0.282 -0.403 0.134 0.252 0.466
εDM−Linear -0.187 -0.241 -0.311 0.120 0.171 0.288

εDM−NL -0.179 -0.260 -0.367 0.121 0.161 0.221
εCE−NL -0.203 -0.282 -0.402 0.134 0.252 0.464

Table S.6.1 Self-energy and energy renormalization values (in eV) at the CBM and VBM for several temperatures.
Calculation were done using a 128×128×128 q-grid and η = 5 meV.

S.6.2 Σ+ and Σ−

In Fig. S.6.1, we separate the contributions Σ+ and Σ− of the spectral function at the VBM and set the
KS energy at zero. Σ− is proportional to n+1, so the plateau is visible at low and high temperatures.
Although the self-energy becomes larger with temperature, the spectral function is normalized, and
there is little effect in the shape of the plateau. The spectral weight is essentially zero between −ωLO
and the peak, indicating that the plateau is indeed given by the contribution of modes with ω ∼ ωLO.
As temperature increases, the distance from the QP peak to the plateau is very different from ωLO. For
Σ+, which is proportional to n instead of n+ 1, there is no plateau at low temperatures. At T = 900
K, since +ωLO is about 1800 K (in temperature units), the plateau should be visible, but it coincides
with the main peak, making the peak artificially wide at 900 K. At higher temperatures, the QP peak
is shifted to larger values and the plateau acquires more weight, becoming visible. However, both the
overlap of the plateau and main peak, and the varying distance between them, are artificial effects
of the DM approach. In CE instead, plateaus (if visible) are at about −ωLO and +ωLO from the main
peak.

For the CBM, Fig. S.6.2, the behavior is analogous, but the plateau and main peak never merge.
The DM spectral function in Figs. 10 and 11 uses the full self-energy Σ = Σ−+Σ+.
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Figure S.6.1 The DM spectral function at the VBM splitted into Σ+ and Σ− for T=300, 900, 1500 K, calculated
with a 128×128×128 q-mesh and η = 5 meV. The vertical black lines in the figures show −ωLO on the left and
+ωLO on the right.
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Figure S.6.2 The DM spectral function at CBM splitted into Σ+ and Σ− for T=300, 900, 1500 K, calculated with a
128×128×128 q-mesh and η = 5 meV. The vertical black lines in the figures show −ωLO on the left and +ωLO on
the right.

S.6.3 Scattering matrix elements
The e-ph scattering matrix elements are obtained from the derivative of the KS potential. Although
quadrupoles contribute to the KS potential around Γ, their contribution to the electron-phonon matrix
elements is negligible, as can be observed in Fig. S.6.3. |gCBM(q)| is the sum of the matrix elements
over all bands and phonon modes calculated at the CBM.
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Figure S.6.3 Modulus of electron-phonon scattering matrix elements, g jq
nmk, evaluated at nk = CBM and summed

over the m bands and j phonon modes. These elements are pictured in a q-path following high-symmetric crystal
points in the reciprocal lattice. There is a split between long-range (blue) and short-range fields (orange), together
with their sum (green). The long-range contribution to the electron-phonon scattering matrix elements, and, thus,
to the nonpolaron plateau is negligible.

S.6.4 ARPES
Taking into account just the ARPES theoretical picture, Fig. S.6.4, it is difficult to discern changes
between DM and CE approaches at 300 K, Fig. S.6.4a. As the temperature is increased to 900 K, Fig.
S.6.4b, or 1500 K, Fig. S.6.4c, one can notice a shift and broadening of the bands, in particular at
the CBM between Γ and X points and the VBM at Γ point. The horizontal lines visible at 8 eV and
(less visible) at -3 eV, corresponding to a very small peak in the spectral function, are due to the high
density of states at the band extrema at L.
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(a) T = 300K

(b) T = 900K

(c) T = 1500K

Figure S.6.4 Spectral function at 300 K (top), 900 K (middle), and 1500 K (bottom). The calculations were
performed using DM (top in each figure) and CE (bottom in each figure) with a N = 128 q-grid. All values were
displaced in relation to the VBM at 300 K. To be able to observe the presence of the nonpolaron signature near
VBM and CBM, the intensity scale of the density of states (colormap) was limited to 0.3.
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