Tailoring defect's structure and dopant's composition in Eu³⁺&Tb³⁺ doped MgF₂ phosphors in order to generate a wide range of color characteristics

Sumanta Mukherjee^a, Nimai Pathak^b*, Kawsar Ali^c, Debarati Das^a, Dhanadeep Dutta^{ad},

^aFuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India
 ^bRadiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India
 ^cGlass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085,India
 ^dHomi Bhabha National Institute, Mumbai-400085, India
 *Email: <u>nmpathak4@gmail.com</u>, nimai@barc.gov.in
 Telephone-+91-22-25590715/0636
 Fax-+91-22-25405151

Instrumentation:

X-Ray diffraction (XRD)

An X-ray diffractometer (Proto x-ray diffraction system) has been used to characterised all the powder samples using CuK_{α} (λ = 1.5406 and 1.5444 Å) monochromatic radiation as X-ray radiation source. All the XRD patterns were recorded within the 2 θ range of 10-70 with a step width of 0.02 and scan rate of 5s. The samples were spread uniformly on the sample holder and then covered with scotch tape and sealing with plastic wrap in order to avoid exposure to the air during the XRD measurement.

Infrared study

We have used a Bruker Platinum ATR FTIR spectrometer to record the FTIR spectra of all the compounds in the spectral range 2000-500 cm^{-1} .

Photoluminescence study (PL)

An Edinburgh CD-920 unit with M 300 monochromator has been used to record the PL spectra of all the compounds. We have used F-900 software provided by Edinburgh Analytical Instruments, UK for the data acquisition and analysis. A Xenon flash with a frequency of 100 Hz has been used as excitation source to record the emission, excitation, and lifetime spectra. To minimize the peak intensity fluctuation and to maximize S/N ratio, we have taken at least five scans for each of the spectrum. The well-established Time-correlated single-photon counting (TCSPC) technique has been used to perform the lifetime study for the compounds.

Positron Annihilation Lifetime Spectroscopy (PALS) study

We have caried out the PALS measurements for all the powder compounds at room temperature using ²²Na as positron source (~ 10 μ Ci) and two BaF₂ scintillation detectors connected to a fast–fast coincidence system. At first the positron source was deposited in a thin Kapton foil and then this was kept inside the powder sample in an aluminum vial. The

vial was kept between two BaF_2 detectors. We measured a resolving time of 250 ps for the positron window settings with ⁶⁰Co source and the time calibration was 12.5 ps/channel. For each measurement, the spectrum with approximately 2 x 10⁶ counts was acquired. We have used the PALSFIT analysis program to analyze all the data.

Figure S1. (a) SEM and (b) EDX spectra of Tb_{0.5}Eu_{0.5}:MF

Figure S2. Total density of states (DOS) and 1-projected partial DOS of pristine MgF₂

Figure S3: Photoluminescence decay profile of $Eu_{0.5}Tb_{0.5}:MgF_2 \lambda_{ex} = 233$ nm excitation and (a) 545 nm (b) 615 nm emission wavelengths.

Space Group	Wyckoff position					
	Atom	Site	Х	у	Z	occupancy
	Mg	2a	0.0	0.0	0.0	1.0
P42/mnm (136) (Tetragonal)	F	4f	0.304	0.304	0.0	1.0

Table S1: Crystallographic parameters of MgF₂

Table S2: Lattice parameters and volume of the pristine and Eu and Eu and Tb co-doped MgF_2 .

Phase	Lattice parameters (Å)	Volume (Å ³)
MgF ₂	a=4.680 (4.6912)[43], 4.625[44] 4.621[45] c=3.083 (3.096) [43] 3.052[44] 3.052[45]	67.542
Eu:MgF ₂	a=4.720, c=3.106	69.178
Tb:MgF ₂	a=4.726, c=3.110	69.457
Eu,Tb:MgF ₂	a=4.744, c=3.131	70.474

System	Calculated Lifetime (ps)				
UndopedMgF ₂ [33]					
Bulk	204.8				
Mg monovacancy V_{Mg}	227.1				
Mg divacancy $2V_{Mg}$	234.3				
A vacancy cluster created by removing four neighboring Mg atoms and associated eight F atoms (VC1)	397.8				
A vacancy cluster created by removing five neighboring Mg atoms and associated ten F atoms (VC2)	440.9				
Tb ³⁺ doped M	MgF ₂ system				
Tb_{Mg} (charge not balanced)	204.2				
$Tb_{Mg} + V_{Mg}'' + V_F$ (charge balanced)	279.9				
Bulk	205 1				
$Tb_{Ma} + Li_{Ma}$	200.1				
$\frac{mg}{Tb_{Ma} + Li_{Ma}} + VC1$	398.2				
(Here the VC1 cluster remains intact)					
$Tb_{Mg} + Li_{Mg} + VC2$	442.1				
(Here the VC2 cluster remains intact)					
Tb ³⁺ and Li ⁺ replace two Mg atoms within the	284.5				
VCI cluster and the cluster contains only four U_{i} to maintain the					
V_F to maintain the required charge balanced					
Tb^{3+} and Li ⁺ replace two Mg atoms within the	266.5				
VC2 cluster and the cluster contains only six	200.3				
V_{F} to maintain the required charge balanced					
condition					
Eu ³⁺ and Tb ³⁺ doped MgF ₂ system					
$Eu_{Mg} + Tb_{Mg} + V_{Mg}$	227.8				
$Eu_{Mg} + Tb_{Mg} + 2V_{Mg}$	234.7				
$Eu_{Mg} + Tb_{Mg} + V_{Mg} + VC1$	428.6				
(Here the VC1 cluster remains intact)					
$Eu_{Mg} + Tb_{Mg} + V_{Mg} + VC2$	538.3				
(Here the VC2 cluster remains intact)	260.2				
the VC1 cluster and the cluster contains only	207.2				
two					

Table S3: Theoretically calculated positron lifetime in MgF₂:

V_F to maintain the required charge balanced	
condition	
Eu ³⁺ and Tb ³⁺ replace two Mg atoms within	270.5
the VC2 cluster and the cluster contains only	
four	
V_F^{\cdot} to maintain the required charge balanced	
condition	