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S1. Product operator formalism - INEPT

We review here a product operator analysis of the refocused INEPT pulse sequence element. At the

A

beginning of the refocused INEPT element, the in-phase magnetization SX is along the transverse

plane for °N. During the first echo period (71), the in-phase magnetization is converted into anti-phase
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S, —275 5 c0s(27d 47 ) S, +sin (223 7,) S, 1, (1)

where | represents the 'H spins. The anti-phase coherence is transferred from S to / with the 90°

pulses applied on both channels, which separates the two spin-echo evolution periods:

sin(273,47,) S, 1, (=/2)ly (x/2)S: sin(273,47,) S, 1, - (2)

Following 7, in the second echo period (), the antiphase 'H coherence is converted into in-phase |X

that is then detected during acquisition (t2):
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sin(27,47,) S, [, —2=2— sin (27,47, )sin (27,57, ) I, . (3)
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S2. Optimisation of PMLG *H homonuclear decoupling on >N-glycine
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Figure S1. A stacked representation of a two-variable optimization (see Fig. 3a) of both 7iG_expt (in steps of 0.25
us) and w1 in a 1D H-CRAMPS (16 = 500 MHz) MAS (v = 60 kHz) NMR experiment of *N-glycine, in which

windowed |3|\/|LG5zxrn was applied with it = 0.54 ps and a *H transmitter offset of —0.6 kHz, corresponding to

the data shown in Figure 3a of the main text. 8 co-added transients were collected for each optimization point.
On the right, slices from the optimization are shown with the associated 7 _expt and v1. The relative intensity of
the NHs* peak with respect to the best *H homonuclear decoupling performance at 2 7ig_expt = 6.25 ps and w1 =
110 kHz is stated.
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Figure S2. Zoom of the region between 7i6_expt = 5.5 s — 7.5 us for the two-variable optimization of 7ic_expt (in
steps of 0.25 us) and v in a 1D *H-CRAMPS (1o = 500 MHz) MAS (v = 60 kHz) NMR spectrum of the °*N-glycine
a) CH2 and b) NHs* peak intensity, corresponding to the data shown in Figure 3a of the main text. Windowed

PMLG5:Xm was applied with & = 7.20 ps, @ik = 0.54 ps and a *H transmitter offset of —0.6 kHz. 8 co-added

transients were collected for each optimization point for a recycle delay of 3 s.

S3. Optimisation of tilt pulses via the NHs* signal intensity in a 1D CRAMPS experiment of

5N-glycine

The duration of the tilt pulses, #ir, was optimised in a two-variable optimization with 7ic_expt,
for the intensity of the NHs* resonance in a 1D CRAMPS spectrum of *N-glycine at 60 kHz MAS as
presented in Fig. $3a with windowed PMLG5” . It is evident from Fig. S3 that the optimum values for

the two parameters, 7ig_expt and =i, are linked, i.e., when one becomes longer the other shortens,

maintaining the same combined length of ~7.1 ps (considering two sandwich pulses per PMLGn?;

block — see Fig. 2b) to maintain the same cycle time, = (see eq. 11), and hence ensure a constant
optimum vy (see eq. 12). The couples with best NHs* signal intensity were 6.75 & 0.15 ps, 6.5 & 0.30
ps and 6.25 & 0.45 ps for 2 7ig_expt and i, respectively, with a preference for a longer 7ig_expt and
shorter =i (see Fig. S3b). A fine optimisation with 16 co-added transients was employed to identify

the optimum parameters as used in Fig. 3¢ (and repeated in Fig. S3c, left-hand spectrum).
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Figure S3. a) Two-variable optimization of 2 7i6_expt (0.25 s step) and ik (0.05 s step) for the NHs* peak intensity
in a 1D 'H-CRAMPS (10 = 500 MHz) MAS (v+ = 60 kHz) spectrum of >N-labelled glycine. Windowed PMLG5:m

was applied with v1 = 106 kHz and a 'H transmitter offset of —0.6 kHz. 4 co-added transients were collected for
each optimization point. b) Slices extracted from the contour plot show the best spectrum intensities obtained
with the indicated 27 expt and mit. ¢) 1D *H CRAMPS *°N-labelled glycine spectra acquired with windowed

PMLG5:Xm using 2 7ie_expt = 6.20 ps and it = 0.54 ps (left) and windowed PMLG5§m without it (right). 32 co-

added transients were added. For all experiments with windowed *H homonuclear decoupling, 7w = 7.20 ps.

The *H CRAMPS spectrum on the right in Figure S3¢ was acquired with the same nutation frequency

and offset, but with no tilt pulses and 2 7ic_expt Was chosen to be 7 us such that the cycle time and
hence s are the same. The intensity of the NHs* peak obtained with windowed PMLG5”  at i expt =
6.20 pus and mie = 0.54 ps is within 5% of that obtained without tilt pulses. Note, however, that the
peak widths for F’MLGS?m without tilt pulses are 235 Hz for the NHs* peak, and 224 Hz and 231 Hz for
the CH;, peaks. After scaling (Acs = 0.80), the FWHM become 294 Hz, 280 Hz and 289 Hz, respectively,
which is ~15 Hz larger than those stated in Table 3 for windowed PMLG5” with 7ic_expt = 6.20 ps and

Thilt = 0.54 Us.
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S4. 2D 'H-'H correlation and optimisation of the >N-glycine NH;" signal intensity in a 1D-filtered CP-
refocused INEPT NMR spectrum for PMLG *H decoupling

Each 'H-detected FID was acquired for 30 ms with a spectral width of 57 ppm. The 'H indirect

dimension was acquired with 96 t; FIDs with a dwell time of 29.16 ps (57 ppm spectral width - no *H

homonuclear decoupling), 12.40 pus (134 ppm spectral width - windowless PMLGSEXm) and 11.68 us
(143 ppm — windowless PMLG9:Xrn ). The maximum t; were 1.40 ms, 0.59 ms and 0.56 ms using no *H

homonuclear decoupling, windowless PMLG5” and windowless PMLG9”: | respectively. The States-

TPPI method was employed to achieve sign discrimination in the indirect dimension.
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Figure S4. 2D H-'H (w = 600 MHz) correlation spectra of *>°N-Glycine acquired at 1 = 60 kHz MAS with a) no H
homonuclear decoupling, b) windowless P|\/|LG5§Xm (6 =3.10 ps, v1 = 104 kHz, Q = 1 kHz) and c) b) windowless

I:’MLG9:Xm (ne =2.92 pus, 1 = 104 kHz, Q2 = —0.8 kHz). In all the experiments, 4 transients were coadded for 96

t1 FIDs for a recycle delay of 3 s. The zero-offset is set with the carrier being on resonance with the NHs* peak in
the indirect dimension.
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Figure S5. H RF carrier optimization for a 1D-filtered (t1 = 0) **N-'H (1o = 500 MHz) CP (contact time = 2 ms)-
Refocused INEPT MAS (v = 60 kHz) NMR experiment for *N-labelled glycine, whereby a) windowed F’l\/lLG5:(m

IH homonuclear decoupling (See Fig. 5) was applied with 7 expt = 3.1 Ys, @it = 0.54 ps and a H nutation
frequency, vi, of 106 kHz during 71 (1.999 ms, 69 =) and 104 kHz during 2 (1.391 ms ,48 =), b) windowless

F’l\/ILG5§Xm 'H homonuclear decoupling was applied with 7ic_expt = 3.1 ps and a *H nutation frequency, v, of 104

kHz during 71 (2.096 ms, 169 ) and 102 kHz during 7 (0.496 ms, 40 =), c) windowed Pl\/lLngxm 'H homonuclear
decoupling was applied with 7ig_expt = 2.92 ps, zie = 0.82 s and a H nutation frequency, v, of 104 kHz during
(2.085 ms, 71 =) and 106 kHz during 7 (1.498 ms, 51 =) and d) windowless PMLGgfm 'H homonuclear

decoupling was applied with zig_expt = 2.92 ps and a 'H nutation frequency, 11, of 104 kHz during 71 (2.091 ms,
179 =) and 102 kHz during 7 (1.192 ms, 102 ). 16 transients were coadded. For all experiments with windowed
decoupling, 7 was substituted with a delay of 7.20 ps. The zero-offset is set with the carrier being on resonance
with the NHs* peak.
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S5. Cimetidine

Here, the normalized intensity is related to the respective maximum intensity for each peak, i.e. the
maximum intensity is equal to 1 for all the resonances. However, note that the NH15 proton signal

intensity is ~30 % of that of NH3.
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Figure S6. Dephasing of cimetidine NH proton (10 = 600 MHz) resonances as a function of the spin-echo duration,

7, with windowed PMLGS:Xm (76_expt = 3.10 s, mit = 0.54 ps and zw = 7.20 ps) for a nutation frequency of 106

kHz. Fits to an exponential decay function are shown, with the spin-echo dephasing times, T2/, as listed in Table

S1. 8 transients were co-added for a recycle delay of 5 s.

Table S1. Cimetidine *H dephasing time, T2, for the three NH resonances and 7>’ scaled by the experimental Acs,

Acs T2, acquired on a H spin-echo? experiment using windowed F’l\/lLGSiXm b
d (ppm) vi (kHz) Acs Ty’ (ms) Acs T2' (ms)
NH3 11.6 1.34 1.10
NH15 9.7 106 0.82 0.58 0.48
NH10 8.2 1.23 1.01

bl
2AImplemented at v = 600 MHz and 1+ = 60 kHz (see Fig. S6). Windowed PMLGsmm was implemented with 7ic = 3.10 ps, zir = 0.54 ps

and 7w =7.20 us
b Q= — 0.8 kHz, where the zero-offset is set with the carrier being on resonance with the NHs* peak of *N-glycine
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S6. Simulations of eqs 1 and 2
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Figure S7. Simulation of dependence of the ®N-'H CP-Refocused INEPT intensity on the spin-echo
period,t;, according to eq. 1 and 2 (from the main text) for a NH (red) or NHs (blue) group, for a Jxu
equal to: a) 90 Hz, b) 75 Hz and c) 60 Hz ignoring dephasing, and d) 90 Hz, e) 75 Hz and f) 60 Hz with

exponential dephasing with a nominal nitrogen T, of 35 ms.
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