Electronic Supplementary Information (ESI)

Optimisation of ¹H PMLG homonuclear decoupling at 60 kHz MAS to enable ¹⁵N-¹H through-bond heteronuclear correlation solid-state NMR spectroscopy

Jacqueline Tognetti, W. Trent Franks, Józef R. Lewandowski, Steven P. Brown

S1. Product operator formalism - INEPT

We review here a product operator analysis of the refocused INEPT pulse sequence element. At the beginning of the refocused INEPT element, the in-phase magnetization \hat{S}_x is along the transverse plane for ¹⁵N. During the first echo period (τ_1), the in-phase magnetization is converted into anti-phase $\hat{S}_x \hat{I}_z$:

$$\hat{S}_x \xrightarrow{\tau_1 - \pi - \tau_1} \cos\left(2\pi J_{IS}\tau_1\right)\hat{S}_x + \sin\left(2\pi J_{IS}\tau_1\right)\hat{S}_y\hat{I}_z, \qquad (1)$$

where \hat{I} represents the ¹H spins. The anti-phase coherence is transferred from *S* to *I* with the 90° pulses applied on both channels, which separates the two spin-echo evolution periods:

$$\sin\left(2\pi J_{IS}\tau_{1}\right)\hat{S}_{y}\hat{I}_{z} \xrightarrow{(\pi/2)\hat{I}_{x}} \xrightarrow{(\pi/2)\hat{S}_{x}} \sin\left(2\pi J_{IS}\tau_{1}\right)\hat{S}_{z}\hat{I}_{y}.$$
(2)

Following τ_1 , in the second echo period (τ_2), the antiphase ¹H coherence is converted into in-phase I_x that is then detected during acquisition (t_2):

$$\sin\left(2\pi J_{IS}\tau_{1}\right)\hat{S}_{z}\hat{I}_{y} \xrightarrow{\tau_{2}-\pi-\tau_{2}} \sin\left(2\pi J_{IS}\tau_{2}\right)\sin\left(2\pi J_{IS}\tau_{1}\right)\hat{I}_{x}.$$
(3)

S2. Optimisation of PMLG ¹H homonuclear decoupling on ¹⁵N-glycine

Figure S1. A stacked representation of a two-variable optimization (see **Fig. 3a**) of both τ_{LG_expt} (in steps of 0.25 µs) and ν_1 in a 1D ¹H-CRAMPS ($\nu_0 = 500$ MHz) MAS ($\nu_r = 60$ kHz) NMR experiment of ¹⁵N-glycine, in which windowed $PMLG5_{mm}^{\overline{xt}}$ was applied with $\tau_{tilt} = 0.54$ µs and a ¹H transmitter offset of -0.6 kHz, corresponding to the data shown in Figure 3a of the main text. 8 co-added transients were collected for each optimization point. On the right, slices from the optimization are shown with the associated τ_{LG_expt} and ν_1 . The relative intensity of the NH₃⁺ peak with respect to the best ¹H homonuclear decoupling performance at 2 $\tau_{LG_expt} = 6.25$ µs and $\nu_1 = 110$ kHz is stated.

Figure S2. Zoom of the region between $\tau_{LG_expt} = 5.5 \ \mu s - 7.5 \ \mu s$ for the two-variable optimization of τ_{LG_expt} (in steps of 0.25 μs) and ν_1 in a 1D ¹H-CRAMPS ($\nu_0 = 500 \text{ MHz}$) MAS ($\nu_r = 60 \text{ kHz}$) NMR spectrum of the ¹⁵N-glycine a) CH₂ and b) NH₃⁺ peak intensity, corresponding to the data shown in Figure 3a of the main text. Windowed $PMLG5_{mm}^{\overline{xx}}$ was applied with $\tau_w = 7.20 \ \mu s$, $\tau_{tilt} = 0.54 \ \mu s$ and a ¹H transmitter offset of -0.6 kHz. 8 co-added transients were collected for each optimization point for a recycle delay of 3 s.

S3. Optimisation of tilt pulses via the NH₃⁺ signal intensity in a 1D CRAMPS experiment of ¹⁵N-glycine

The duration of the tilt pulses, τ_{tilt} , was optimised in a two-variable optimization with $\tau_{\text{LG}_{expt}}$, for the intensity of the NH₃⁺ resonance in a 1D CRAMPS spectrum of ¹⁵N-glycine at 60 kHz MAS as presented in **Fig. S3a** with windowed $PMLG5_{mm}^{\text{Tx}}$. It is evident from **Fig. S3** that the optimum values for the two parameters, $\tau_{\text{LG}_{expt}}$ and τ_{tilt} , are linked, i.e., when one becomes longer the other shortens, maintaining the same combined length of ~7.1 µs (considering two sandwich pulses per $PMLGn_R^{\phi}$ block – see **Fig. 2b**) to maintain the same cycle time, τ_c (see eq. 11), and hence ensure a constant optimum ψ (see eq. 12). The couples with best NH₃⁺ signal intensity were 6.75 & 0.15 µs, 6.5 & 0.30 µs and 6.25 & 0.45 µs for 2 $\tau_{\text{LG}_{expt}}$ and τ_{tilt} , respectively, with a preference for a longer $\tau_{\text{LG}_{expt}}$ and shorter τ_{tilt} (see **Fig. S3b**). A fine optimisation with 16 co-added transients was employed to identify the optimum parameters as used in **Fig. 3c** (and repeated in **Fig. S3c**, left-hand spectrum).

Figure S3. a) Two-variable optimization of 2 π_{LG_expt} (0.25 μ s step) and τ_{tilt} (0.05 μ s step) for the NH₃⁺ peak intensity in a 1D ¹H-CRAMPS ($\nu_0 = 500$ MHz) MAS ($\nu_r = 60$ kHz) spectrum of ¹⁵N-labelled glycine. Windowed $PMLG5_{mm}^{\bar{x}x}$ was applied with $\nu_1 = 106$ kHz and a ¹H transmitter offset of -0.6 kHz. 4 co-added transients were collected for each optimization point. b) Slices extracted from the contour plot show the best spectrum intensities obtained with the indicated 2 π_{LG_expt} and π_{tilt} . c) 1D ¹H CRAMPS ¹⁵N-labelled glycine spectra acquired with windowed $PMLG5_{mm}^{\bar{x}x}$ using 2 $\pi_{LG_expt} = 6.20$ μ s and $\pi_{tilt} = 0.54$ μ s (left) and windowed $PMLG5_{mm}^{\bar{x}x}$ without π_{tilt} (right). 32 co-added transients were added. For all experiments with windowed ¹H homonuclear decoupling, $\tau_w = 7.20$ μ s.

The ¹H CRAMPS spectrum on the right in **Figure S3c** was acquired with the same nutation frequency and offset, but with no tilt pulses and $2 \tau_{LG_{expt}}$ was chosen to be 7 µs such that the cycle time and hence ψ are the same. The intensity of the NH₃⁺ peak obtained with windowed $PMLG5_{nmn}^{\overline{xx}}$ at $\tau_{LG_{expt}} =$ 6.20 µs and $\tau_{tilt} = 0.54$ µs is within 5% of that obtained without tilt pulses. Note, however, that the peak widths for $PMLG5_{mmn}^{\overline{xx}}$ without tilt pulses are 235 Hz for the NH₃⁺ peak, and 224 Hz and 231 Hz for the CH₂ peaks. After scaling ($\lambda_{CS} = 0.80$), the FWHM become 294 Hz, 280 Hz and 289 Hz, respectively, which is ~15 Hz larger than those stated in **Table 3** for windowed $PMLG5_{mmn}^{\overline{xx}}$ with $\tau_{LG_{expt}} = 6.20$ µs and $\tau_{tilt} = 0.54$ µs.

S4. 2D ¹H-¹H correlation and optimisation of the ¹⁵N-glycine NH₃⁺ signal intensity in a 1D-filtered CPrefocused INEPT NMR spectrum for PMLG ¹H decoupling

Each ¹H-detected FID was acquired for 30 ms with a spectral width of 57 ppm. The ¹H indirect dimension was acquired with 96 t_1 FIDs with a dwell time of 29.16 µs (57 ppm spectral width - no ¹H homonuclear decoupling), 12.40 µs (134 ppm spectral width - windowless $PMLG5_{mm}^{\bar{x}t}$) and 11.68 µs (143 ppm – windowless $PMLG9_{mm}^{\bar{x}t}$). The maximum t_1 were 1.40 ms, 0.59 ms and 0.56 ms using no ¹H homonuclear decoupling, windowless $PMLG5_{mm}^{\bar{x}t}$ and windowless $PMLG9_{mm}^{\bar{x}t}$, respectively. The States-TPPI method was employed to achieve sign discrimination in the indirect dimension.

Figure S4. 2D ¹H-¹H ($\nu_0 = 600$ MHz) correlation spectra of ¹⁵N-Glycine acquired at $\nu_r = 60$ kHz MAS with a) no ¹H homonuclear decoupling, b) windowless $PMLG5_{mm}^{\bar{x}x}$ ($\tau_{LG} = 3.10 \,\mu$ s, $\nu_1 = 104 \,\text{kHz}$, $\Omega = 1 \,\text{kHz}$) and c) b) windowless $PMLG9_{mm}^{\bar{x}x}$ ($\tau_{LG} = 2.92 \,\mu$ s, $\nu_1 = 104 \,\text{kHz}$, $\Omega = -0.8 \,\text{kHz}$). In all the experiments, 4 transients were coadded for 96 t_1 FIDs for a recycle delay of 3 s. The zero-offset is set with the carrier being on resonance with the NH₃⁺ peak in the indirect dimension.

Figure S5. ¹H RF carrier optimization for a 1D-filtered ($t_1 = 0$) ¹⁵N-¹H ($v_0 = 500$ MHz) CP (contact time = 2 ms)-Refocused INEPT MAS ($v_1 = 60$ kHz) NMR experiment for ¹⁵N-labelled glycine, whereby a) windowed $PMLG5_{nnn}^{\overline{xx}}$ ¹H homonuclear decoupling (See **Fig. 5**) was applied with $\pi_{LG_expt} = 3.1 \ \mu s$, $\pi_{tilt} = 0.54 \ \mu s$ and a ¹H nutation frequency, v_1 , of 106 kHz during τ_1 (1.999 ms, 69 τ_c) and 104 kHz during τ_2 (1.391 ms ,48 π_c), b) windowless $PMLG5_{nnn}^{\overline{xx}}$ ¹H homonuclear decoupling was applied with $\pi_{LG_expt} = 3.1 \ \mu s$ and a ¹H nutation frequency, v_1 , of 104 kHz during τ_1 (2.096 ms, 169 τ_c) and 102 kHz during τ_2 (0.496 ms, 40 τ_c), c) windowed $PMLG9_{nnn}^{\overline{xx}}$ ¹H homonuclear decoupling was applied with $\pi_{LG_expt} = 3.1 \ \mu s$ and a ¹H nutation frequency, v_1 , of 104 kHz during τ_1 (2.096 ms, 169 τ_c) and 102 kHz during τ_2 (0.496 ms, 40 τ_c), c) windowed $PMLG9_{nnn}^{\overline{xx}}$ ¹H homonuclear decoupling was applied with $\pi_{LG_expt} = 2.92 \ \mu s$, $\pi_{tilt} = 0.82 \ \mu s$ and a ¹H nutation frequency, v_1 , of 104 kHz during τ_1 (2.085 ms, 71 τ_c) and 106 kHz during τ_2 (1.498 ms, 51 τ_c) and d) windowless $PMLG9_{nnn}^{\overline{xx}}$ ¹H homonuclear decoupling was applied with $\pi_{LG_expt} = 2.92 \ \mu s$ and a ¹H nutation frequency, v_1 , of 104 kHz during τ_1 (2.091 ms, 179 τ_c) and 102 kHz during τ_2 (1.192 ms, 102 τ_c). 16 transients were coadded. For all experiments with windowed decoupling, τ_w was substituted with a delay of 7.20 μs . The zero-offset is set with the carrier being on resonance with the NH₃⁺ peak.

S5. Cimetidine

Here, the normalized intensity is related to the respective maximum intensity for each peak , i.e. the maximum intensity is equal to 1 for all the resonances. However, note that the NH15 proton signal intensity is \sim 30 % of that of NH3.

Figure S6. Dephasing of cimetidine NH proton ($\nu_0 = 600 \text{ MHz}$) resonances as a function of the spin-echo duration, τ , with windowed $PMLG5_{mm}^{\overline{x}x}$ ($\tau_{LG_expt} = 3.10 \text{ }\mu\text{s}$, $\tau_{tilt} = 0.54 \text{ }\mu\text{s}$ and $\tau_w = 7.20 \text{ }\mu\text{s}$) for a nutation frequency of 106 kHz. Fits to an exponential decay function are shown, with the spin-echo dephasing times, T_2' , as listed in **Table S1**. 8 transients were co-added for a recycle delay of 5 s.

Table S1. Cimetidine ¹H dephasing time, T_2' , for the three NH resonances and T_2' scaled by the experimental λ_{CS} , $\lambda_{CS} T_2'$, acquired on a ¹H spin-echo^a experiment using windowed $PMLG5_{mm}^{\overline{xx} \ b}$

	δ (ppm)	<i>v</i> 1 (kHz)	λ_{cs}	<i>T</i> ₂ ′ (ms)	λ _{cs} <i>T</i> ₂' (ms)
NH3	11.6			1.34	1.10
NH15	9.7	106	0.82	0.58	0.48
NH10	8.2			1.23	1.01

^aImplemented at $v_0 = 600$ MHz and $v_r = 60$ kHz (see Fig. S6). Windowed $PMLG5_{mm}^{\overline{v}v}$ was implemented with $\tau_{LG} = 3.10 \ \mu s$, $\tau_{tilt} = 0.54 \ \mu s$ and $\tau_w = 7.20 \ \mu s$

 $^{b}\Omega_{rf}$ = -0.8 kHz, where the zero-offset is set with the carrier being on resonance with the NH₃⁺ peak of 15 N-glycine

S6. Simulations of eqs 1 and 2

Figure S7. Simulation of dependence of the ¹⁵N-¹H CP-Refocused INEPT intensity on the spin-echo period, τ_1 , according to eq. 1 and 2 (from the main text) for a NH (red) or NH₃ (blue) group, for a J_{NH} equal to: a) 90 Hz, b) 75 Hz and c) 60 Hz ignoring dephasing, and d) 90 Hz, e) 75 Hz and f) 60 Hz with exponential dephasing with a nominal nitrogen T_2 [•] of 35 ms.