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SI. 1 Summation of echoes for UFZ and the challenge of fast decaying signals 

a) Limits of echo summation

Döpfert et al.1 defined a stop criterion up to which echo number the signals should be added up 
before further addition contributes more noise than signal increase. Echo number n with signal 

 should be added only if . For exponentially decaying echoes, /TE is the 𝑠𝑛
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critical parameter (  is given by T2 for spin echo train and by T2
* for gradient echoes). We 

arbitrarily assign the first echo signal intensity s1 = 1 (though this is smaller than the starting 
magnetization at t = 0).  Assuming relatively slow sampling or fast decay, i.e. TE = , then the 
second echo is already decayed to 36.8% of the 1st echo. The stop criterion for echo no. 2 requires 
that it should at least be 41.4% of the first echo to be added. Thus, TE =  yields best signal for 
no further addition. 

The ideal case for sampling the echoes infinitely faster than the decay means that each signal si 
contributes almost si ≈ 1. The sum of the preceding n-1 echoes is (n-1) and thus the upper limit 
that the n-th contribution yields after normalization by the previous sum is given by (n-1)-1. The 
“test criterion”, shown in Fig. S1, cannot reach the yellow area but must stay outside the red 
area.
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Fig. S1. Signal improvement by summation of echoes. Red area under the curve  𝑛/(𝑛 ‒ 1) ‒ 1
is where echo summation contributes noise rather than signal. Yellow area above the curve 

 is impossible due to the non-zero scan time. Curves in green and blue with different 1/(𝑛 ‒ 1)



values of the critical parameter /TE intersect the red curve to show the maximal number of echoes 
that should be summed to improve the signal. Data is simulated.

For  = 2TE, summation up to n = 3 is beneficial. For  = {5; 10; 50}TE, summation up to n = {6, 13, 
63} improves the signal. We thus see that rapidly decaying signals like those in fast exchanging 
systems ( < 10 ms for gas vesicles as seen by the FID decays in the FA calibration2) suffer from 
strong limitations with regard to efficient echo accumulation. 

b) Further segmentation considerations

The profiles obtained by gradient echoes as shown by Döpfert et al. were relatively soon noise-
dominated. These also showed a blurring of the sharp edges and had a small dynamic range 
where the Rician noise level quickly impaired the information in frequency ranges where signal 
loss due to CEST effect became effective. 

For fast decaying signals and a low starting magnetization, there are important limitations when 
the available magnetization is segmented into pieces along the chemical shift dimension like in 
UFZ:

 only a rather small fraction of both the starting magnetization and the host actually 
actively participates in the CEST effect (those with the “matching” frequency along the 
gradient direction);

 in the typical implementation with cylindrical NMR tubes, different sections of the CEST 
spectrum are encoded with different reference magnetization; the shape of the reference 
magnetization along the spectral dimension depends on the shape of the phantom and/or 
the coil excitation profile along the direction of the applied gradient; low magnetizations 
at the edges are dominated by Rician noise, thus the “valuable” information should be 
concentrated towards the center;

 no redundancy in the expected data is used;
 uniform sampling is applied along the spectral dimension, thus allowing no prioritization 

of “important” ranges around the expected peaks.

The noise along the readout dimension after FT can be quite high for such gradient-encoded z-
spectra. Contrary, the shot-to-shot noise along the chemical shift dimension for conventional 
CEST encoding with polarizers operated in continuous flow mode is rather low (e.g, less than 
0.56% 3). Working with natural abundance 129Xe and choosing continuous flow operation has the 
advantage of i) being cost effective and ii) providing stable magnetization conditions over an 
extended period of time for comparing different spectra. It comes, however, with reduced 
starting magnetization (compared to enriched 129Xe and cryo-separation), but this can be 
overcome by carefully choosing certain dimensions for signal averaging, identifying signal 
redundancies, and segmenting the starting magnetization i) along an “uncritical” dimension and 
ii) into fewer steps. It should thus be favorable to maintain step-wise (non-uniform) encoding 



along  with refreshing the magnetization for each saturation offset and implement 
acceleration for one of the other encoding dimensions. Instead of segmenting the magnetization 
into at least 64 pieces of variable amplitude along the saturation offset dimension it can be 
divided into 32 equal segments to optimize encoding along the spatial dimension via the VFA 
approach. 

Along the spectral dimension, no nuclei will be affected at all by RF saturation for certain 
acquisitions, but for the decisive frequencies, all nuclei and hosts participate in the CEST 
mechanism and thus make most efficient use to encode the CEST effect even for small host 
concentrations. Translating the magnetization segmentation step from the chemical shift 
dimension (where the noise level would otherwise seriously impair the z-spectrum) into the 
domain of spatial frequencies (k-space) for imaging helps to spread the noise across all pixels in 
image space. 

c) FID data to illustrate accelerated loss of phase coherence

Fig. S2. The accessibility of CB7 for Xe causes an accelerated loss of phase coherence in the pool 
of free Xe in solution. This is illustrated by comparing the FID of two experimental conditions: a) 
Xe with unrestricted access to the portal/cavity and b) in the presence of the blocker 1 at 60-fold 



excess. In the latter case, the FID signal lasts almost a second while in the former case, it vanishes 
within 180 ms.

SI. 2. The substitution factor

a) Analytical derivation

The substitution factor  scales the signal intensities in the k-space periphery to generate a 𝛽
smooth transition between the periphery and the keyhole region. If both the reference and the 

keyhole images are acquired using  according to Eq. 1, which makes the transverse 𝜃𝑉𝐹𝐴

magnetization equal for a pre-selected number of k-space lines, the substitution factor can be 

derived analytically. The transverse magnetization  in the n-th excitation depends on the 𝑀𝑥𝑦

amount of longitudinal magnetization  that is left from the previous excitation (n-1) and on 𝑀𝑧

the flip angle. Thus, transverse magnetization for the n-th k-space lines reads

 

𝑀𝑥𝑦(𝑛) = 𝑀𝑧(𝑛 ‒ 1) ∙ sin (𝜃𝑉𝐹𝐴(𝑛)),     𝑛 = 1, 2, …, 𝑁.

(S1)

Comparing the signal in the keyhole k-space lines with the signal in the reference k-space lines 
yields the general form of the substitution factor

𝛽 =
𝑀𝑥𝑦 (𝑛)𝑘𝑒𝑦

𝑀𝑥𝑦 (𝑛)𝑟𝑒𝑓
.

(S2)

Critically, when using VFA excitations, the transverse magnetizations available for each k-space 
lines are uniform. Thus, we can compare the signal from a single arbitrary line in the keyhole k-
space to its corresponding line in the reference k-space. Choosing the first line for both k-spaces 
provides an elegant solution, since with substitution of  the terms would not simplify as 𝑛 ≠ 1
conveniently as follows. The end result is, nonetheless, valid in general since the transverse 
magnetization remains constant for all lines within each dataset and can be taken from the 
respective first line . The phase encoding applied in either the fully sampled reference data 𝑛 = 1
or the sub-sampled keyhole causes different segmentation of the overall available magnetization 
but the suggested analytical scaling does not change the phase encoding rather just scales the 
line-wise signal magnitude. Let  be the undersampling factor (the ratio between the number of 𝑅
lines in the reference and keyhole k-spaces), substituting Eq. 1 and Eq. S1 into Eq. S2,



𝛽 =
𝑀𝑥𝑦 (𝑛)𝑘𝑒𝑦

𝑀𝑥𝑦 (𝑛)𝑟𝑒𝑓
=

(𝑀𝑧(𝑛 ‒ 1) ∙ sin (𝜃𝑉𝐹𝐴(𝑛)))𝑘𝑒𝑦

(𝑀𝑧(𝑛 ‒ 1) ∙ sin (𝜃𝑉𝐹𝐴(𝑛)))𝑟𝑒𝑓

=
𝑀𝑧(𝑛 ‒ 1)𝑘𝑒𝑦

𝑀𝑧(𝑛 ‒ 1)𝑟𝑒𝑓
∙

sin (tan ‒ 1 ( 1
𝑁 𝑅 ‒ 𝑛))

sin (tan ‒ 1 ( 1
𝑁 ‒ 𝑛))

=
𝑀𝑧(𝑛 ‒ 1)𝑘𝑒𝑦

𝑀𝑧(𝑛 ‒ 1)𝑟𝑒𝑓
∙

1
𝑁 𝑅 ‒ 𝑛 + 1

1
𝑁 ‒ 𝑛 + 1

𝑛 = 1
=

𝑀0
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∙

𝑁
𝑁 𝑅

= 𝑅.

(S3)

In this derivation, the identity  was used and the initial sin (tan ‒ 1 (1 𝑥)) = 1 𝑥 + 1

longitudinal magnetization is .𝑀0

b) Experimental support for the analytically derived value 

To validate the formula for the substitution factor (Eq. S3), we compared the predicted values 
with experimentally determined ones. The histograms in Fig. S3 show the pixel-wise ratios 
between signal intensities in the keyhole k-spaces and signal intensities in the equivalent areas 
in the reference k-spaces for six different undersampling factors between R = 1.33 (Fig. S3A) and 
R = 8 (Fig. S3F). Due to the decreasing number of pixels for increasing undersampling factors, the 
total number of counts varies between 576 (Fig. S3A) and 16 (Fig. S3F). Further, the different 
levels of transverse magnetization for different undersampling factors lead to a shift of the mode 
of the histograms towards higher values for higher undersampling factors. This shift clearly 
follows the prediction according to Eq. S3. The analytically derived substitution factors for all 
investigated  values (dashed orange lines in Fig. S3A-F) fit the modes of the histograms and thus 𝑅
the experimentally derived values very well.



Fig. S3.  Experimental validation of the analytically derived substitution factor . The histograms 𝛽
show the distribution of the pixel-wise ratios between signal intensities in the keyhole k-space 
pixels and the signal intensities in the corresponding reference k-space pixels. The dashed orange 
lines illustrate the analytically derived values according to Eq. S3. For all investigated 
undersampling factors between R = 1.33 (A) and R = 8 (F), the modes of the histograms match the 
theoretical values.

c) Impact of incorrect substitution factor

The choice of the correct substitution factor minimizes distortions in the reconstructed images 
that result from discontinuity in the signal intensity profiles of composite k-spaces. Fig. S4 
demonstrates the effect of such discontinuities. Whereas overestimated  values lead to 𝛽
overrepresented periphery values and thus to very noisy images (Fig. S4 middle), underestimated 

 values lead to an underrepresentation of high frequencies and therefore to blurring (Fig. S4, 𝛽
right). This blurring due to underestimated  values is comparable to the effect of zero-filling. 𝛽



Fig. S4.  Effect of the substitution factor on the image reconstruction. Top row: Hybrid k-spaces 

with keyhole size 16x16, left to right: theoretical, overestimated and underestimated  values. 𝛽

Bottom row: Image reconstruction (by Fourier transform) of the respective k-spaces above.  

SI. 3. Stripes as keyholes

In the current implementation, the squared keyhole regions are actually acquired as stripes with 
 frequency and  phase encoding steps. These stripes are trimmed into squares of the 𝑁 𝑁/𝑅

desired size of . This ensures that the different frequency encoding steps in the reference (𝑁/𝑅)2

and in the keyhole images are acquired at the same time points after excitation and thus 
eliminates any potential variations in the signal post-processing (e.g., from digital filtering). An 
additional reason for the acquisition of stripes was to avoid a previously reported4 shift of k-space 
data in Bruker MRI data when low matrix sizes (lower or equal to 32x32) are used. The result of 
this shift is that the first three sampling points of each phase encoding step are significantly 
underestimated. Merging such flawed keyhole data with the reference k-space data would lead 
to a discontinuity in k-space signal intensities and thus to image artifacts. The acquisition of 
stripes and the subsequent trimming of k-space data bypasses this shift problem. For low matrix 
sizes, the data shift might appear in the fully sampled reference image already. This must be 
considered in the merging process.   



SI. 4. 129Xe flip angle calibration and validation of correct variable flip angle (VFA) 
implementation 

Flip angle (FA) calibration was done by using k-space (magnitude) data from one acquisition with 
matrix size 32x32 using an adapted 2D FLASH sequence. A constant nominal FA was set to a 
nominal value of ca.  (guessed from previous experience). The excitation pulse shape was 60°
rectangular, phase encoding (PE) was disabled and the reference power was set to 0.04 W (value 
guessed from a  block pulse calibration done in Topspin and calculated for a 1 ms pulse 90°
duration). The central six pixels from each k-space line were extracted and then summed, this 
sum was assigned as the signal value. The trend of the k-space signal against the line number is 
shown in Fig. S5A.  

Fig. S5. (A) Signal decay with nominal CFA=60  (blue) and fitting of an exponential function °

to this curve (orange; y0 respects the Rician noise that becomes relevant 𝑓(𝑥) = max (𝐴 ∙ 𝑎𝑥, 𝑦0) 

after ca. 9 excitations). Each signal value is the sum of the six central pixels in the corresponding 
k-space line. Extraction of the exponent base value from the fit allows to calculate the measured 
flip angle and correct it. (B) Constant signal with VFA. The constant trend serves as validation of 
correct VFA implementation.

The theoretical equation for the curve in Fig. S5A:

.𝑆(𝑛) = 𝑀0sin 𝛼(𝑒
‒ 𝑇𝑅/𝑇1 ∙ cos 𝛼)𝑛,          𝑛 = 0,1…𝑁 ‒ 1



(S4)

Where  is signal intensity in the n-th line,   is the initial longitudinal magnetization,  is 𝑆(𝑛) 𝑀0 𝛼
the measured flip angle (with nominal value of 60 ), n is the line number and N is the total number °

of lines (number of PE steps). Under the assumption that   ( of xenon in water at 9.4 𝑇𝑅 ≪  𝑇1 𝑇1

T is ca. 100 sec) Eq. S4 simplifies to:

.𝑆(𝑛) = 𝑀0sin 𝛼(cos 𝛼)𝑛,          𝑛 = 0,1…𝑁 ‒ 1

(S5)

Fitting an exponential function (of the form ) to this curve and extracting 𝑓(𝑥) = max (𝐴 ∙ 𝑎𝑥, 𝑦0) 

the value of the exponent base , provides the measured flip angle (   ). The result 𝑎  𝛼 = 𝑎𝑟𝑐𝑜𝑠(𝑎)
is  and the fitted curve is displayed in Fig. S5A. This lower than expected  value is 𝛼 = 47.34° 𝛼
compensated by increasing the value of the reference power from 0.04 W to 0.064 W (a factor 

of ). Next, we repeated the image acquisition and fitting routine to (60°/47.34°)2 = 1.606
validate we could measure . Before the fitting routine, the spoiling gradient of the read 𝛼 = ~60°
direction was verified for sufficient strength such that a monotonic decreasing trend appeared 
for the blue curve in Fig. S5A. Using the adjusted value for the reference power, we changed the 
flip angle scheme from constant to variable and acquired the k-space data for another image. 
The rest of the acquisition parameters remained unchanged (especially PE is still disabled). VFA 
acquisition should provide a constant k-space signal along the lines (refer to VFA section). Fig. 
S5B shows k-space signal vs. line number with the VFA scheme, as expected the signal is 
distributed uniformly along the lines. Miscalibration would cause deviation from the constant 
trend, typically in the form of high signal in the last few lines.

SI. 5. Quantification of SNR increase     

Here we study the SNR achieved for images acquired with the proposed CAVKA method. A sample 
solution containing cryptophane-A mono-acid (CrA-ma; 10 µM in water + 0.2% DMSO) was used. 
129Xe Imaging parameters were: excitation pulse shape = sinc, TE = 5.6 ms, TR = 12.2 ms, FOV = 
10x10 mm2, slice thickness = 20 mm, BW = 4 kHz, matrix = 32x32. Smaller matrix sizes for keyhole 
acquisitions were realized by changing the phase encoding interpolation parameter between 1 
(matrix = 32x32) and 8 (matrix = 32x4). SNR is calculated as the mean of the signal ROI over the 
SD of a comparative noise ROI of 49 pixels (~5% of total numbers of pixels) located in the top left 
corner of every image (see Fig. S6C). Measurements were done in room temperature (without 
using the variable temperature unit).



We independently investigated the effect of the keyhole size on signal intensity (Fig. S6A) and 
the effect of the number of averages on SNR (Fig. S6B). We also studied the combined effect of 
both approaches (Fig. S6C). All data shown in Fig. S6A were acquired without averaging. Following 
the calculations in Eq. S3, the signal intensity shows a square root dependency on the 
undersampling factor. This is shown by the linear function with a slope of 0.5 on a double-

Fig. S6. Signal and SNR dependencies of the CAVKA approach. (A) Signal intensity in non-
averaged hybrid image vs. undersampling factor (error bars too small to be displayed). (B) SNR 
in fully sampled images vs. number of averages. (C) SNR in hybrid images with different 
combinations of undersampling factors R (1.33, 2 and 4) and number of averages of the reference 
image. All data points represent the mean ± 1 SD values of 10 independent measurements.

logarithmic plot (Fig. S6A). Fig. S6B shows the general effect of averaging on SNR. All data shown 
in this sub-figure were acquired without using the keyhole approach. As expected, a square root 
dependency of the SNR on the number of averages is observed. Finally, Fig. S6C shows the 
combined effect of averaging the reference image (and thus the k-space periphery) and 
enhancing the signal intensity in the keyhole region (due to the VFA-approach). The plot shows 
the SNR as a function of the number of averages of the reference image for three different 
undersampling factors of R = 1.33 (green), R = 2 (orange) and R = 4 (blue). In addition, the linear 



fit from Fig. S6B is included (dashed gray line) to show the theoretical SNR values when both, the 
periphery and the keyhole region, were averaged (at the cost of longer acquisition time). 
Importantly, the SNR of the CAVKA method increases with increasing undersampling factors and 
almost reaches the level of the dashed reference line for CAVKA-4. In addition, for a fixed 
undersampling factor, the SNR increases with increasing numbers of averages of the reference 
image. This effect is more dominant for higher undersampling factors (and thus smaller keyhole 
sizes), because larger fractions of the k-space data benefit from averaging the reference image. 
A possible limiting factor for the undersampling factor/keyhole size could be the capturing of 
dynamic changes in detailed (small) features of the image or along sharp edges. In this work, 
dynamic CEST contrast between the two compartments of the phantom was still captured using 
a 8x8 keyhole size ( ). This matter was also investigated in a four-compartment digital 𝑅 = 4
phantom that has a more complex geometry than the two-compartment phantom, see section 
S7.

 SI. 6. Derivation of CAVKA acceleration factor and 129Xe deliveries saving 

129Xe imaging includes the steps of xenon gas delivery (typically 10-15 s) and allowing the bubbles 
to collapse (typically ≤ 5 s). Their combined time (tdel) limits the acceleration factor of the CAVKA 

acquisition to be approximated as . However, for other applications, where 𝑁𝜔 ∙ 𝑁𝐴/(𝑁𝜔 + 𝑁𝐴)

the acquisition time is equal to the total scan time, i.e., the acquisition time is the multiplication 
of TR (the repetition time between two phase encoding steps) with the number of phase encodes 
and with the number of images and/or averages, a higher acceleration factor can be achieved. 

This factor is given by . The formulas are based on a constant TR  𝑁𝜔 ∙ 𝑅 ∙ 𝑁𝐴/(𝑁𝜔 + 𝑅 ∙ 𝑁𝐴)

(typically on the order of 10 ms) for all images. tsat is the duration of the saturation pulse (part of 
the CEST preparation block) and is typically on the order of tdel. The derivation is as follows:

a) Acceleration factor for HyperCEST

The acquisition time of a fully sampled and averaged image series is given by

 . 𝑡𝑓𝑢𝑙𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑎𝑛𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 = (𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸 ∙ 𝑇𝑅) ∙ 𝑁𝐴 ∙ 𝑁𝜔

For CAVKA, one fully sampled and averaged reference image and  keyhole images (without 𝑁𝜔

averages) are acquired. Thus, the total time is given by:

 𝑡𝐶𝐴𝑉𝐾𝐴 = (𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸 ∙ 𝑇𝑅) ∙ 𝑁𝐴 + (𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸/𝑅 ∙ 𝑇𝑅 ) ∙ 𝑁𝜔

The acceleration factor is given by the ratio of both acquisition times:



𝑡𝑓𝑢𝑙𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑎𝑛𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑

𝑡𝐶𝐴𝑉𝐾𝐴
=

=
(𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸 ∙ 𝑇𝑅) ∙ 𝑁𝐴 ∙ 𝑁𝜔

(𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸 ∙ 𝑇𝑅) ∙ 𝑁𝐴 + (𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 +
𝑁𝑃𝐸

𝑅
∙ 𝑇𝑅 ) ∙ 𝑁𝜔  

𝑇𝑅 ≪ 𝑡𝑑𝑒𝑙
=

(𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸 ∙ 𝑇𝑅) ∙ 𝑁𝐴 ∙ 𝑁𝜔

(𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 + 𝑁𝑃𝐸 ∙ 𝑇𝑅) ∙ 𝑁𝐴 + (𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡 +
𝑁𝑃𝐸

𝑅
∙ 𝑇𝑅 ) ∙ 𝑁𝜔  

=
(𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡) ∙ 𝑁𝐴 ∙ 𝑁𝜔

(𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡) ∙ 𝑁𝐴 + (𝑡𝑑𝑒𝑙 + 𝑡𝑠𝑎𝑡) ∙ 𝑁𝜔
=

𝑁𝐴 ∙ 𝑁𝜔

𝑁𝐴 + 𝑁𝜔

The overall behavior of the acceleration factor as a function of the number of averages of the 
reference image and the extent of the imaging series is shown in Fig. S7. 

 

Fig. S7.  Dependence of the CAVKA acceleration factor on the number of averages of the reference 
scan and on the number of images in the series.



This acceleration capability addresses the unfavorable combination of time-consuming steps that 
is beyond the scope of other undersampling approaches such as compressed sensing5, deep 
learning6 and parallel imaging7. These assume the phase encoding steps to be the most time-
consuming element and target on reducing their number by subsampling. However, a reduced 
number of phase encodes would not lead to a meaningful acceleration when a fixed time of hp 
media delivery and/or magnetization preparation is needed before the readout. When time-
consuming pre-encoding steps are needed in each averaging acquisition, only a reduction of 
averaging steps by reusing a reference image with sharable data along the imaging series 
dimension provides the desired acceleration. Similarly, as for imaging methods of parallel 
imaging, CAVKA is a technique that can be used to process undersampled data from different 
types of pulse sequences. However, the two methods pursue different acceleration approaches 
and differ by the hardware requirements, namely the multichannel receiver array that is needed 
in parallel imaging. 

b) 129Xe deliveries saving 

The number of 129Xe deliveries for a fully sampled and averaged series is . For CAVKA, 𝑁𝐴 ∙ 𝑁𝜔

however, we acquire one fully sampled and averaged reference image and  keyhole images. 𝑁𝜔

The number of deliveries is therefore  The saving factor is given by the ratio of the 𝑁𝐴 + 𝑁𝜔

number of deliveries:

𝑁𝐴 ∙ 𝑁𝜔

𝑁𝐴 + 𝑁𝜔 

c) Acceleration factor for other types of imaging series

For generality, we assume an application without a pre-readout preparation block. The 
calculation remains the same as for HyperCEST but tdel and tsat can be omitted (no delivery and 
saturation times): 

𝑡𝑓𝑢𝑙𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑎𝑛𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑

𝑡𝐶𝐴𝑉𝐾𝐴
=

𝑁𝑃𝐸 ∙ 𝑇𝑅 ∙ 𝑁𝐴 ∙ 𝑁𝜔

𝑁𝑃𝐸 ∙ 𝑇𝑅 ∙ 𝑁𝐴 + 𝑁𝑃𝐸/𝑅 ∙ 𝑇𝑅 ∙ 𝑁𝜔  
=  

𝑁𝐴 ∙ 𝑁𝜔 ∙ 𝑅

𝑅 ∙ 𝑁𝐴 + 𝑁𝜔  

Applying CAVKA to acquire an image series with the same size and number of averages like the 
one needed for the spectral data shown in Fig. S8 would result in acceleration factor of ~17 in 
this application instead of just ~7 in HyperCEST. 

SI. 7. Comparison of z-spectra from CAVKA and conventional acquisition with averaging 



We applied CAVKA to acquire a CEST image series using hyperpolarized 129Xe and CrA-ma as a 
well characterized HyperCEST agent. For CEST preparations, a rectangular pulse with amplitude 
B1 = 15 µT and duration tsat = 10 s was used. Saturation was applied at 35 offsets (-361, -361, -
361, -149, -144, -139, -138, -137, -136, -135, -134, -133, -132, -131, -130, -129, -128, -127, -126, -
125, -120, -115,  -90, -45, -12, -9, -6, -3, -1.5, 0, 1.5, 3, 6, 9 and 12 ppm) relative to 129Xe in water. 
The first three offsets were used as dummies to stabilize the gas delivery and were not included 
in the data processing. Fig. S8 shows the z-spectra from a data set acquired using CAVKA-4 with 
9 averages of the reference image (blue) compared to a fully sampled and 9-times averaged data 
set (orange). The inlay visualizes the corresponding acquisition times of 21 min and 149 min for 
the CAVKA-4 and the fully sampled and averaged acquisition, respectively. The nature of 
hyperpolarized nuclei demands their redelivery for each image in the series and therefore not 
only for the different offsets, but also for each averaging acquisition. This is due to the fact that 
the non-equilibrium magnetization is used up after each acquisition. Consequently, the CAVKA 
approach of acquiring one averaged reference image and (partially) reusing it for the entire image 
series reduces the number of gas deliveries from 315 to 44 and thus the acquisition time by ~86%. 
The z-spectra in Fig. S8 show excellent agreement between conventional (fully sampled and 
averaged) and CAVKA-based acquisitions and thus demonstrate the potential of the proposed 
CAVKA method to accelerate the acquisition of image series (like in CEST MRI) without sacrificing 
image or data quality. 

Fig. S8. HyperCEST z-spectra of CrA-ma acquired using CAVKA-4 method and conventional 
imaging with averaging. Data points represent ROI-averaged and normalized signal intensities. 
The almost complete overlap of the spectra shows the reliability of the CAVKA method and yet 
with a 7-fold reduction of the acquisition time. 



SI. 8. Digital phantom simulation to study the reuse of high frequency information in a CEST 
acquisition and the error of this reuse in ROI-based z-spectra  

The sharing of k-space data that carries information on the edges of each sample tube may raise 
concerns about potential artefacts in spectra that are derived from ROIs. We thus investigated 
this aspect with a “digital phantom” that comprises multiple compartments of different shape 
(i.e. a more complex geometry than in our application) to test the method for robustness. The 
utilized digital phantom (size 256x256) is inspired by the Shepp-Logan virtual phantom8 and 
comprises four compartments. Signal intensities of a Z-spectrum were assigned to each pixel in 
the different compartments. These z-spectra (41 offsets between 100 ppm and 140 ppm) are 
based on numerical simulations following the Bloch-McConnell (BMC) equations9  for two pools 
(bulk and CEST). The outer compartment (Comp. 1) maintains a constant (non-CEST responsive) 
signal and the other compartments were carefully designed to provide different combinations of 
on-resonant (120 ppm) and off-resonant (100 or 140 ppm) contrast: Compartments 2 and 3 have 
the same on-resonant contrast, but unlike compartment 2, compartment 3 does not have off-
resonant contrast at all. Compartment 4 has an on- and off-resonant contrast, however, both are 
lower compared to compartment 2. These differences in on- and off- resonant contrasts were 
chosen to test the performance of CAVKA under different scenarios and were realized by 
adjusting the relative pool size fractions of the CEST pool to 0.4%, 0.5% and 0.1% for 
compartments 2, 3 and 4, respectively. Additionally, the corresponding pool sizes of the bulk pool 
were set to 0.8, 1 and 0.9. Other simulation parameters were: T1/T2 of bulk pool = 2/0.2 s, T1/T2 
of CEST pool = 2/0.03 s, CEST resonance frequency = 120 ppm, exchange rate with the bulk pool 
= 500 Hz, saturation power B1 = 5 µT, saturation duration tsat = 20 s. CAVKA images were 
reconstructed for undersampling factors R = 2, 4, 8, 16, 32, and 64. For the reference image, 16 
averages were used. The averaging was mimicked in a three-step process (see section S8) to 
respect the different noise conditions between the keyhole and the periphery. Keyholes were 
created using the fully-sized k-space, which was multiplied by  (following Eq. S3) to simulate 𝑅
the VFA signal enhancement, followed by the addition of noise and finally cutting out the center 
(according to R value). Hybrid k-space data were constructed in the same way as the 
experimental data. The simulated data is available at http://doi.org/10.5281/zenodo.4883621.

The keyhole method is prone to loss of image details when excessive undersampling is applied. 
Fig. S9a compares between a CAVKA-16 image (including a reference image of 16 averages) and 
a fully sampled image simulated to be acquired with the same number of averages. R = 16 is a 
more extreme application of the method than in our experimental data to validate the 
robustness of CAVKA. This comparison is done for the off-resonant and on-resonant (120 ppm) 
case. Whereas the off-resonant CAVKA image shows no artefacts at all (Fig. S9a bottom left), the 
on-resonant one exhibits artefacts in the form of blurred edges of the inner compartments (Fig. 
S9a bottom right). To investigate these artefacts as a function of the undersampling factor, error 
maps for undersampling factors between 2 and 64 were calculated. These maps (Fig. S9b) show 
the pixel-wise deviations of the on-resonant CAVKA images from the simulated BMC-based 

http://doi.org/10.5281/zenodo.4883621


images without noise. As expected, the errors increase with increasing undersampling factors 
and are most pronounced for compartment 3, which does not have any off-resonance contrast 
and is thus the most challenging one for the proposed CAVKA method. However, up to an 
undersampling factor of 16, the errors are restricted to the edges of the compartments. For 
higher R-values, distortions start to appear and the errors are not limited to the edges of the 
compartments anymore. The overall increased deviations in the CAVKA-2 error map are the 
result of high noise values in the relatively large keyhole region when a small undersampling 
factor is chosen. We further investigated the influence of these distortions on ROI-based z-
spectra for R=16 and 16 averages of the reference image. Fig. S9c shows the ROI-averaged z-
spectra of compartments 2 (blue), 3 (orange) and 4 (green). The dashed lines correspond to the 
CAVKA data, the solid lines to the simulated BMC data and the dashed-dotted lines show their 
difference. Despite including pixels close to the compartment edges (ROIs were identical to the 
compartments shapes), differences in the spectra occur only at the on-resonant frequency. In 
agreement with the error maps shown in Fig. S9b, the largest deviations are observed for 
compartment 3.  

Fig. S9.  Performance of the CAVKA method on a digital phantom (matrix size 256x256) with 
different CEST-responsive areas. a) Off- and on-resonant CEST images illustrating artefacts in 
CAVKA images. CAVKA images were normalized (divided by  ) to allow comparison. Off-𝑅
resonant images retain sharp edges, on-resonant images experience blurring for the edges of the 
CEST-responsive areas. b) Error maps for CAVKA images for undersampling factors between 2 
and 64. The error maps were calculated by subtracting CAVKA images from noise-free BMC-
based images followed by normalization. c+d) CEST compartments and CEST spectra derived 
from the respective ROIs in the CAVKA-16-reconstructed images (using 16 averages for the 
reference image) and from BMC-simulated reference spectra. 

The geometry of the digital phantom was chosen to be more complex and, in this scenario, the 
limit for the keyhole size was found to be around 16x16. However, this corresponds to an 
undersampling factor of R=16 already and shows that the maximal achievable undersampling 



factor highly depends on the geometry of the measured object and the matrix size of the 
reference image. In general, objects with complex geometry or contrast pattern demand for 
larger keyhole matrix sizes. Furthermore, the simulations revealed that the difference in contrast 
between the reference image and the keyhole image is a crucial point for the CAVKA approach 
that should be considered when adjusting the undersampling factor for a specific scenario. 



SI. 9. Noise handling for averaging in synthetic data of digital CEST phantom 

The averaging in simulated data of the digital phantom was mimicked in a three-step process to 
respect the different noise conditions between the keyhole and the periphery. In the first step, 
normally distributed real-valued noise with zero mean and standard deviation = 1/3 was added 
to a noise-free image (the first in the z-spectrum imaging series). This was repeated to obtain a 
stack of 500 different noise-carrying images that are afterwards transformed to (complex) k-
space. In a second step, a subtraction of the non-noisy data from each element of the noisy data 
stack yields an isolated noise data stack (500 elements) in k-space. In the third step, the average 
of up to 49 randomly selected and complex-valued sets from the noise data stack was added to 
the noise-free data to create the k-space stack with a pre-selected number of (noise) averages.

SI. 10. Lorentzian curve fitting to HyperCEST z-spectra

Exponential Lorentzian curves were fitted to the measured z-spectra by using the function:

.

𝑦(𝑥) = 𝑚𝑎𝑥(𝑀0𝑒

‒ [ 𝜆𝑜𝑛 ‒ 𝑟𝑒𝑠1( Γ1/2)2 

(𝑥 ‒ 𝑥𝑐1)2 + ( Γ1/2)2
 +  

𝜆𝑜𝑛 ‒ 𝑟𝑒𝑠2( Γ2/2)2 

(𝑥 ‒ 𝑥𝑐2)2 + (Γ2/2)2]
,𝜎)

 respects the Rician noise (same as in section SI. 3) and it is the residual signal value in the case 𝜎

of complete saturation. The first function in the max argument is a superposition of two 
Lorentzians; the first one (parameters with index 1) models the direct saturation (i.e., saturation 
of the free xenon pool), and the second one (parameters with index 2) models the CEST 

saturation.  denote the maximum (i.e., on-resonant) depolarization rate, FWHM,  𝜆𝑜𝑛 ‒ 𝑟𝑒𝑠, Γ, 𝑥𝑐

and the center of each peak, respectively, and  denotes the baseline value (magnetization 𝑀0

value without saturation). Fitting was done initially to each of the non-normalized spectra to 

extract the value of . In such plots, the Rician noise level is identical in both compartments but 𝑀0

 typically differs in the two ROIs. Next, each spectrum was normalized by dividing all of its data 𝑀0

points by the value of  . This was then used to perform a second fitting to each of the 𝑀0

normalized spectra.  is then obtained for both compartments but the area with originally 𝑀0 = 1

lower starting magnetization exhibits the higher noise level . If necessary, like in the case of CB7 𝜎

+ cadaverine in Fig. 6a, fitting of the spectrum was done with only one Lorentzian as now 
systematic signal could be identified at -95 ppm offset.  



SI. 11. Screening acquisitions for quick validation and to refine concentrations

Before obtaining more detailed spectra at certain host:guest ratios, some quick screens have 
been performed to obtain some first orientation. This applies to the results shown in Fig. 5-6, but 
also to quickly exclude any significant interaction of 1 with CB6. These screens were done by 
obtaining coarse HyperCEST spectra with a relative short list of offsets (saturation frequencies) 
to save time. 

The experiments in Fig. S10 and S11 were done as imaging experiments in a single (one-
compartment) phantom where all samples had a volume of 1.5 ml.  Imaging was done with CFA 
= 20° and with 9 saturation frequencies offsets (−360, −360, −360, −121, −95, −69, −40.6, 0 and 
40.6 ppm) relative to 129Xe in water (first three offsets were acquired as dummy scans to stabilize 
the gas flow and were omitted in data processing). The rest of the acquisition parameters were 
as detailed in the experimental section. These are not CAVKA acquisitions; neither averaging nor 
VFA was used. Since only single phantom was used (one ROI), the image quality was sufficient for 
signal extraction.  

After observing that the blocker 1 did not sufficiently suppress the CEST response from a CB7 
sample (see Fig. 4a), it was considered that the CEST response is only from a CB6 impurity in CB7 
and the assumption that 1 is probably too big to be included in CB6. We therefore tested the 
effect of 1 directly on CB6 by comparing the z-spectra of 10 M CB6 without and with the blocker 
1 at 1:1 ratio. This concentration of CB6 was chosen as it provides appropriate CEST response 
that can be tested for blocking. Fig. S10 shows the results. No blocking effect of 1 on CB6 was 
detected.  The two spectra were acquired from imaging experiments in a single phantom by first 
measuring just CB6 and repeating the measurement after the addition of 1.

Fig. S10. Z-spectra of 10 M CB6 with (orange) and without (blue) the guest 1 at 1:1 ratio.



For estimating the CB6 concentration that provides a similar CEST response as from the nominal 
50 M CB7 sample, CB6 aqueous solutions with concentrations of 0.5, 1 and 1.5 M were 
prepared. Their HyperCEST spectra were measured and compared to the spectrum of CB7. Fig. 
S11a shows the results. The CEST response (signal dip at -95 ppm) increases when the CB6 
concentration increases and 1.5 M CB6 achieves a comparable response as from CB7 (only as a 
first approximation, more exact quantification appears in the main text). Thus, this concentration 
was chosen for the experiment shown in Fig. 5b.  

In the same manner, a first approximation for the minimal putrescine concentration that fully 
blocks the CEST response from 50 M CB7 was determined. Solutions of 50 M CB7 and 
putrescine in concentrations of 0.5, 1 and 4 M (CB7:3 at ratios of 100:1, 50:1 and 12.5:1) were 
prepared. Their HyperCEST spectra were measured and compared to the spectrum of CB7 only. 
Results appear in Fig. S11b. The suppression of the CEST response increases when the putrescine 
concentration increases and 4 M putrescine achieves an almost full blocking. This putrescine 
concentration was then used in the experiment shown in Fig. 6b.

Fig. S11. Screening suitable concentration ranges. a)  Refining the CB6 concentration that provides 
similar CEST response as from 50 M CB7. b)   Refining the putrescine concentration that fully 
suppresses the CEST response from 50 M CB7. Data points represent signals from ROI averages 
obtained from images.



SI. 12. Exclusion of Xe interactions at 100-fold dilution

Fig. S12.  CAVKA-derived z-spectra for diluted samples of CB7 show no signs of Xe binding or 
labile interaction.  

SI. 13. Fitting results for quantitative analysis of z-spectra

1. Fitting results for spectra in Fig. 5a: 50 µM CB7 vs. 5 µM CB6

chemical shift
CB7 sample CB6 sample

ppm Error ppm error
direct saturation -0.5 0.1 -0.44 0.08
CEST peak -94.6 0.2 -95.1 0.1
difference -94.1 0.2236068 -94.66 0.12806248

peak width (FWHM)
CB7 sample CB6 sample

ppm error ppm error
CEST peak 14.1 0.6 14.0 0.4

depolarization rate single phantom
CB7 sample CB6 sample

2 error 2 error
CEST peak 0.02055 0.0005 0.02232 0.0004
factor 2 for CB7 vs. CB6 0.92069892 0.02782218

nominal  CB6 reference 5 µM
predicted CB6 impurity 4.60349462 µM
error 0.13911089 µM



2. Fitting results for spectra in Fig. 5b: 50 µM CB7 vs. 1.5 µM CB6

chemical shift
CB7 sample CB6 sample

ppm error ppm error
direct saturation -1.7 0.6 -0.06 0.09
CEST peak -95.0 0.3 -94.0 0.5
difference -93.3 0.67082039 -93.94 0.50803543

peak width (FWHM)
CB7 sample CB6 sample

ppm error ppm error
CEST peak 13.8 1.8 15.9 2.4

depolarization rate double phantom
CB7 sample CB6 sample

2 error 2 error
CEST peak 0.0285 0.0016 0.011 0.0007
factor 2 for CB7 vs. CB6 2.59090909 0.21986617

nominal  CB6 reference 1.5 µM
predicted CB6 impurity 3.88636364 µM
error 0.32979925 µM

The widths of the CEST response are very similar and overlap within 1 SD . This is another strong indication 
that both host systems provide the same rate kBA to release Xe. The CB6 sample was in the outer 
compartment that could potentially see slightly higher B1 saturation field and thus produce a minor line 
broadening compared to the inner compartment. The B1 inhomogeneity of this type of coil was 
investigated in the SI of Ref. 10 The SD of B1 was ca. 5% for such a setup and this might at least partially 
explain a somewhat broader signal from the outer compartment.



3. Fitting results for spectra in Fig. 6b: blocking the signal from 50 µM CB7 with 4 µM 3

depolarization rate double phantom
CB7 sample CB7 + 4 µM Put

2 error 2 error
CEST peak 0.02525 0.00133 0.00248 0.0005
blocking factor in % 90.1782178 2.04666324

nominal  concentration 3 4 µM
predicted CB6 impurity 4.43566096 µM
error 0.1006707 µM
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