Electrically driven robust tuning of lattice thermal conductivity

E Zhou^{1, †}, Donghai Wei^{1, †}, Jing Wu¹, Guangzhao Qin,^{1, *} and Ming Hu^{2, *}

 ¹State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
² Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

[†] These authors contributed equally.

^{*} Corresponding authors: G.Q. <<u>gzqin@hnu.edu.cn></u>, M.H. <<u>hu@sc.edu></u>

Supplemental Fig. S1 The difference in charge density under typical electric field in 0.05 (a,c,e) and 0.1 eV/Å (b,d,f) for bilayer graphene (a, b), silicene (c, d), germanene (e, f). ($\Delta \rho = \rho(E_z) - \rho(E_z = 0)$) (yellow: positive accumulation of charge, blue: negative depletion of charge). The isosurface is set at 2 x 10⁻⁵.

Supplemental Fig. S2 The projected density of states (pDOS) of C atoms with external electric field in bilayer graphene.

Supplemental Fig. S3 The normalized cumulative κ with respect to the phonon mean free path (MFP) for AB stacking bilayer graphene.