Effect of nanostructuring on the interaction of CO₂ with molybdenum carbide nanoparticles

Carlos Jimenez-Orozco,*^a Marc Figueras,^b Elizabeth Flórez,^a Francesc Viñes,*^b José A. Rodriguez,^c Francesc Illas^b

^a Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Carrera 87 No 30-65, Medellín, Colombia

^b Universitat de Barcelona, Departament de Ciència de Materials i Química Física & Institut de

Química Teòrica i Computacional (IQTCUB), c/Martí i Franquès 1-11, 08028 Barcelona, Spain.

^c Brookhaven National Laboratory, Chemistry Division, Upton, New York 11973, United States of

America

Index of Contents

Table S1. Effect of vacuum region extent to the E_{ads} .

Table S2. Structural isomers of the nanoparticles in the S_{set} as predicted from global minima search.

Table S3. Number of initial and final CO₂ different bonding modes considered.

Table S4. Bonding model, energy quantities, and Bader charges, Q, for adsorbed CO₂.

Fig. S1. Geometry of the most stable isomers of nanoparticles in the S_{set} that are considered to study CO_2 adsorption.

Fig. S2. Most stable structure and adsorption energy for CO_2 interacting with $Mo_{12}C_{12}$, $Mo_{24}C_{24}$, and $Mo_{32}C_{32}$ nanoparticles on vertex (top), facet (middle), and lateral (bottoms) modes.

Fig. S3. Top and side view for CO₂ adsorption on extended surfaces δ -MoC(001) (left), β -Mo₂C(001)-C (middle), and β -Mo₂C(001)-Mo.

Fig. S4. CO_2 adsorption on small Mo_4C_6 , Mo_5C_6 , Mo_6C_4 , Mo_6C_5 , and Mo_6C_6 and intermediate Mo_8C_{12} , $Mo_{10}C_{12}$, $Mo_{12}C_6$, $Mo_{12}C_8$, $Mo_{12}C_{10}$, and $Mo_{14}C_{13}$.

Fig. S5. Attachment energy, E_{att} , and Bader charges, Q, for CO₂ adsorbed on small nanoparticles *via* η^3 -CO₂- μ^2 -C_BO_MO_M mode as a function of the Mo/C ratio.

Fig. S6. CO₂ deformation energy, E_{def} , and Bader charges, Q, for CO₂ adsorbed on small nanoparticles *via* η^3 -CO₂- μ^2 -C_BO_MO_M mode as a function of the Mo/C ratio.

Fig. S7. CO₂ attachment energy, E_{att_1} and Bader charges, Q, on the adsorbed CO₂ molecule for the most stable CO₂ bonding mode on the different nanoparticles.

Nanoparticle	Vacuum (Å)	E _{ads} (eV)
ModCe	10.0	-1.70
1110400	12.5	-1.70
	15.0	-1.70
	17.5	-1.69
	20.0	-1.69
M0 ₃₂ C ₃₂	10.0	-2.01
	12.5	-2.00
	15.0	-2.00
	17.5	-2.00
	20.0	-2.00

Table S1. Test calculations ensuring convergence of $CO_2 E_{ads}$ with respect to vacuum region extent for Mo_4C_6 and $Mo_{32}C_{32}$ models. Only the adsorption site displaying the largest E_{ads} has been considered. ZPE is not included.

Table S2. Structural isomers of the S_{set} nanoparticles predicted from the global minima search method used in this work. Relative energies (ΔE_{rel}) to the most stable isomer for each nanoparticle are listed. All values are given in eV. The ^{*a*} superindex denotes the most stable isomer as predicted by the cascade algorithm (see discussion in the main text).

Nanoparticle	Isomer	ΔE_{rel}
Mo ₄ C ₆	1	0.00
	2	1.05
	3	1.49
	4	1.50 ^a
	5	1.56
	6	1.67
	7	1.71
	8	2.25
	9	2.51
	10	2.52
	11	2.53
	12	2.55
	13	3.24
	14	4.87
	15	5.89
Mo ₅ C ₆	1	0.00
	2	0.02
	3	0.07^{a}
	4	0.09
	5	0.28
	6	0.52
	7	0.79
	8	0.91
	9	1.01
	10	2.93
Mo ₆ C ₄	1	0.000
	2	0.15
	3	0.54^{a}

	4	0.63
	5	0.69
	6	0.97
	7	1.37
	8	1.67
	9	1.81
	10	2.14
	11	3.00
	12	3.61
Mo ₆ C ₅	1	0.00
	2	0.26 ^a
	3	0.49
	4	0.60
	5	1.17
	6	1.30
	7	1.45
	8	2.06
	9	2.17
	10	3.60
Mo ₆ C ₆	1	0.00 ^a
	2	1.50
	3	1.73
	4	2.05
	5	2.62
	6	3.17
	7	3.60
	8	3.61
	9	3.81
	10	3.86
	11	4.93

Table S3. Number of initial, #Ini, and different final, #Fin, CO_2 bonding modes for each studied nanoparticle, together with the percentage, %diff, of different final geometries gained for each case; for instance, for Mo_5C_6 isomer #1, the seventy-two initial geometries led to eleven different final geometries, representing a 15% of the initial geometries.

Nanoparticle	Isomer	#Ini	#Fin	%diff
Mo ₄ C ₆	1	5	5	100
	2	9	5	56
	3	5	5	100
	4^a	32	22	69
	5	20	9	45
Mo ₅ C ₆	1	72	11	15
	2	28	18	64
	3^b	11	7	64
	4	21	7	33
Mo_6C_4	1	61	15	25
	2	55	9	16
	3^b	24	18	75
	4	54	14	26
	5	56	11	20
Mo_6C_5	1	46	30	65
	2^b	20	6	30
Mo_6C_6	1	22	17	77
M08C12	1	15	11	73
$Mo_{10}C_{12}$	1	36	21	58
Mo ₁₂ C ₆	1	93	65	70
Mo ₁₂ C ₈	1	125	58	46
$Mo_{12}C_{10}$	1	130	64	49
$Mo_{12}C_{12}$	1	47	37	79
$Mo_{14}C_{13}$	1	18	10	56
Mo ₂₄ C ₂₄	1	45	38	84
M032C32	1	36	25	69

^{*a*} Mo_4C_6 isomers not considered for further characterization.

^b Belongs to the nanoparticle obtained *via* cascade procedure in Ref. 1

Table S4. Most stable adsorption conformation, energy quantities, and Bader charges, Q, in *e*, for the adsorbed CO₂. E_{ads} , E_{def} , E_{dist} , and E_{att} stand for the adsorption energy, the nanoparticle distortion energy, CO₂ deformation energy, and attachment energy, respectively, all given in eV. Mo/C corresponds to the atomic ratio. Results for the extended surfaces in the bottom rows, reproduced from previous work —*cf*. Refs. 2 and 3— are included for comparison.

System	Isomer	Bonding mode	E _{ads}	E dist	E _{def}	Eatt	Q	Mo/C
Mo ₄ C ₆	1	η^2 -CO ₂ - μ^2 -C _C O _M	-1.74	0.20	2.82	-4.76	-0.57	0.67
	2	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.38	0.18	1.67	-4.23	-0.80	
	3	η^2 -CO ₂ - μ^2 -C _C O _M	-3.10	0.00	2.98	-6.08	-0.65	
	4	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-1.95	0.23	1.65	-3.83	-1.05	
	5	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.61	0.07	2.15	-4.83	-0.93	
Mo ₅ C ₆	1	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.34	0.39	1.67	-4.40	-0.93	0.83
	2	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.65	0.19	1.86	-4.70	-0.97	
	3	η^2 -CO ₂ - μ^2 -C _C O _M	-1.73	0.44	3.12	-5.29	-0.71	
	4	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.28	0.39	3.12	-5.29	-0.71	
Mo_6C_4	1	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.23	0.13	1.77	-4.13	-0.90	1.50
	2	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.61	0.39	1.86	-4.86	-0.95	
	3	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-3.18	0.08	1.86	-5.12	-1.04	
	4	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.79	0.35	2.09	-5.03	-0.77	
	5	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.57	0.00	1.91	-4.48	-1.00	
Mo_6C_5	1	η^3 -CO ₂ - μ^2 -C _B O _M O _M	-2.68	0.07	1.70	-4.45	-0.94	1.20
	2	η^2 -CO ₂ - μ^3 -C _B O _B	-2.67	0.35	3.50	-6.52	-1.25	
Mo_6C_6	1	η^2 -CO ₂ - μ^2 -C _C O _M	-1.44	0.61	2.99	-5.04	-0.70	1.00
Mo_8C_{12}		η^2 -CO ₂ - μ^1 -C _M O _M	-1.03	0.22	1.96	-3.21	-0.53	0.67
$Mo_{10}C_{12}$	1	η^3 -CO ₂ - μ^3 -C _C O _M O _M	-1.73	0.14	2.38	-4.25	-0.58	0.83
$Mo_{12}C_6$	1	η^3 -CO ₂ - μ^3 -C _{HW} O _M O _M	-2.56	0.68	3.41	-6.65	-1.35	2.00
$Mo_{12}C_8$	1	η^3 -CO ₂ - μ^3 -C _{HW} O _M O _M	-2.44	0.40	4.26	-7.10	-1.28	1.50
$Mo_{12}C_{10}$	1	η^3 -CO ₂ - μ^3 -C _{HW} O _M O _M	-2.03	0.60	4.10	-6.73	-1.42	1.20
$Mo_{12}C_{12}$	1	η^2 -CO ₂ - μ^2 -C _C O _M	-1.53	0.65	2.95	-5.13	-0.58	1.00
Mo ₁₄ C ₁₃		η^3 -CO ₂ - μ^3 -C _C O _M O _M	-1.45	0.26	2.26	-3.97	-0.73	1.08
$Mo_{24}C_{24}$		η^2 -CO ₂ - μ^2 -C _C O _M	-2.14	0.37	3.48	-5.99	-0.42	1.00
Mo ₃₂ C ₃₂		η^3 -CO ₂ - μ^3 -C _B O _M O _M	-1.97	0.93	3.50	-6.40	-0.61	1.00
δ-MoC(001)		η^1 -CO ₂ - μ^1 -C _C	-1.20	0.16	2.48	-3.84	-0.62	1.00
β-Mo ₂ C(001)-C		η^2 -CO ₂ - μ^2 -C _C O _M	-1.32	0.53	2.83	-4.68	-0.56	2.00
β-Mo ₂ C(001)-Mo		η^3 -CO ₂ - μ^3 -C _B O _M O _B	-1.87	0.15	3.12	-5.14	-0.87	2.00

Fig. S1. Geometry of most stable isomers of the considered nanoparticles in the S_{set} . Mo and C atoms are shown as magenta and brown spheres, respectively.

Mo₄C₆, Isomer 1

Mo₄C₆, Isomer 4

Mo₅C₆, Isomer 2

Mo₄C₆, Isomer 2

Mo₄C₆, Isomer 5

Mo₅C₆, Isomer 3

Mo₄C₆, Isomer 3

Mo₅C₆, Isomer 1

Mo₅C₆, Isomer 4

Mo₆C₄, Isomer 1

Mo₆C₄, Isomer 4

Mo₆C₅, Isomer 2

Mo₆C₄, Isomer 2

Mo₆C₄, Isomer 5

Mo₆C₆, Isomer 1

Mo₆C₅, Isomer 1

Fig. S2. Most stable structure and adsorption energy for CO₂ interacting with $Mo_{12}C_{12}$, $Mo_{24}C_{24}$, and $Mo_{32}C_{32}$ nanoparticles on vertex (top images), facet (middle images), and lateral (bottom images) modes. Colors as in Fig. S1, but CO₂ C and O atoms are shown as black and red spheres. Adsorption site labeling and E_{ads} values are also provided.

 $Mo_{12}C_{12} \\$

 $\eta^{3}-CO_{2}-\mu^{3}-C_{B}O_{M}O_{M}$ $E_{ads} = -1.19 \text{ eV}$

 $\eta^{3}-CO_{2}-\mu^{3}-C_{B}O_{M}O_{M}$ $E_{ads} = -0.36 \text{ eV}$

 $\eta^2 - CO_2 - \mu^2 - C_C O_M$ $E_{ads} = -1.53 \text{ eV}$

 $Mo_{24}C_{24}$

 $\eta^{3}\text{-}\mathrm{CO}_{2}\text{-}\mu^{3}\text{-}\mathrm{C}_{\mathrm{B}}\mathrm{O}_{\mathrm{M}}\mathrm{O}_{\mathrm{M}}$ $E_{ads} = -1.95 \text{ eV}$

 $\eta^{3}-CO_{2}-\mu^{3}-C_{B}O_{M}O_{M}$ $E_{ads} = -0.48 \text{ eV}$

 $\eta^2 - CO_2 - \mu^2 - C_C O_M$ $E_{ads} = -2.14 \text{ eV}$

 $Mo_{32}C_{32}$

 $\eta^{3}\text{-}\mathrm{CO}_{2}\text{-}\mu^{3}\text{-}\mathrm{C}_{\mathrm{B}}\mathrm{O}_{\mathrm{M}}\mathrm{O}_{\mathrm{M}}$ $E_{ads} = -1.97 \text{ eV}$

 $\eta^{3}\text{-}\mathrm{CO}_{2}\text{-}\mu^{3}\text{-}\mathrm{C}_{\mathrm{B}}\mathrm{O}_{\mathrm{M}}\mathrm{O}_{\mathrm{M}}$ $E_{ads} = -0.27 \text{ eV}$

 $\eta^2 - CO_2 - \mu^2 - C_C O_M$ $E_{ads} = -1.69 \text{ eV}$

Fig. S3. Top (top images) and side (bottom images) views for CO_2 adsorption on extended surfaces δ -MoC (001) (left), β -Mo₂C(001)-C (middle), and β -Mo₂C(001)-Mo, reproduced from Refs. 2 and 3, and included for comparison. Colors as in Figs. S1 and S2. Adsorption modes and energies are included.

$$\eta^{1} - CO_{2} - \mu^{1} - C_{C}$$
$$E_{ads} = -1.20 \text{ eV}$$

$$\eta^2 - CO_2 - \mu^2 - C_C O_M$$
$$E_{ads} = -1.32 \text{ eV}$$

$$\eta^{3}-CO_{2}-\mu^{3}-C_{B}O_{M}O_{B}$$
$$E_{ads} = -1.87 \text{ eV}$$

Fig. S4. CO_2 adsorption on small Mo_4C_6 , Mo_5C_6 , Mo_6C_4 , Mo_6C_5 , and Mo_6C_6 clusters, and intermediate Mo_8C_{12} , $Mo_{10}C_{12}$, $Mo_{12}C_6$, $Mo_{12}C_8$, $Mo_{12}C_{10}$, and $Mo_{14}C_{13}$ nanoparticles. Color code as in Fig. S3.

Mo₄C₆, Isomer 2

Mo₄C₆, Isomer 1

Mo₄C₆, Isomer 4

Mo₅C₆, Isomer 2

Mo₄C₆, Isomer 5

Mo₅C₆, Isomer 3

Mo₅C₆, Isomer 1

Mo₅C₆, Isomer 4

Mo₆C₄, Isomer 3

Mo₆C₄, Isomer 1

Mo₆C₄, Isomer 4

Mo₆C₄, Isomer 5

Mo₆C₄, Isomer 2

Mo₆C₅, Isomer 1

Mo₆C₅, Isomer 2

Mo₆C₆, Isomer 1

Mo₈C₁₂ (MetCar)

 $Mo_{10}C_{12} \\$

 $Mo_{12}C_6$

 $Mo_{12}C_8$

 $Mo_{12}C_{10} \\$

Mo₁₄C₁₃ (nanocube)

Fig. S5. Evolution of the attachment energy, E_{att} , in eV, and Bader charges, Q, in *e*, for CO₂ adsorbed on small nanoparticles *via* η^3 -CO₂- μ^2 -C_BO_MO_M mode, as a function of the Mo/C ratio.

Fig. S6. CO_2 deformation energy, E_{def} , in eV, and Bader charge, Q, in *e*, for CO_2 adsorbed on the nanoparticles in S_{set} as a function of the Mo/C ratio, considering in each case the most stable structure, regardless of the bonding mode. Note that this is different from Fig. S5 where only the η^3 - CO_2 - μ^2 - $C_BO_MO_M$ bonding mode was always considered.

Fig. S7. CO_2 attachment energy, E_{att} , in eV, and Bader charges, Q, in *e*, on the adsorbed molecule for the most stable CO_2 bonding mode on the different nanoparticles.

References

- 1 C. Jimenez-Orozco, M. Figueras, E. Flórez, F. Viñes, J. A. Rodriguez and F. Illas, J. Phys. Chem. C, 2021, 125, 6287–6297.
- 2 S. Posada-Pérez, F. Viñes, P. J. Ramirez, A. B. Vidal, J. A. Rodriguez and F. Illas, *Phys. Chem. Chem. Phys.*, 2014, **16**, 14912-14921.
- 3 M. Figueras, A. Jurado, A. Morales-García, F. Viñes, and F. Illas, *Phys. Chem. Chem. Phys.*, 2020, **22**, 19249-19253.