Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

- Supplementary Information for PCCP -

Quantum simulations of thermally activated delayed fluorescence in an all-organic emitter

Tommaso Francese, Arpan Kundu, Francois Gygi and Giulia Galli

Supplementary Sections List:

S1. Molecule: Autocorrelation function of dihedral angle

S2. Molecule: Pairwise Root-Mean Square Deviation (RMSD)

S3. Solid: Distributions of dihedral angles obtained at the PBE and SCAN level of theory

S4. Solid: Autocorrelation function of dihedral angles

S5. Solid: Pairwise Root-Mean Square Deviation (RMSD)

S6. Vibrational Density of States (VDOS)

S7. Intersystem Crossing (ISC) and reverse Intersystem Crossing (rISC) Data Summary

S8. Molecule: HOMO-LUMO Gap Distribution at the PBE Level of theory

S9. Molecule: ΔE_{sT} and f_{OS} distributions for the Classical (CL) and Quantum (QT) sampled configurations at PBE level

S10. Solid: HOMO-LUMO gap as a function of temperature at T=0 K and T=300 K for the high packing fraction system at PBE level.

S11. f_{os} for the Classical sampled configuration and f_{os} for the Quantum sampled configurations at PBE level

S12. Solid: Polar graph distribution of the ΔE_{ST} for the sampled solid-state configurations from the FPMD and QTMD trajectories calculated at B3LYP level

S13. Solid: Potential transitions at PBE level

S14. Cartesian coordinates of the \mathbf{S}_0 optimized structure of the NAI-DMAC in the gas phase limit

S15. Cartesian coordinates of the S_0 optimized structure of the NAI-DMAC in the high packing fraction limit

S1. Molecule: Autocorrelation function of dihedral angle

Supplementary Figure 1. Dihedral angle autocorrelation function for a molecular trajectory at T=300 K. The autocorrelation curve was fitted with an exponential decay of the form $\exp(-x/\tau)$. The resulting τ is 43.6 ± 2.2 fs, which corresponds to \approx 90 molecular dynamics (MD) steps, where the time-step in our simulations is \approx 0.4838 fs. Hence by sampling configurations every 90 MD steps or more we obtain a set of statistically non-correlated samples.

Supplementary Figure 2. The pairwise Root Mean Square Deviation $(RMSD)^{1.2}$ computed for a trajectory of 20000 first principles molecular dynamics (FPMD) steps at 300 K. a) Off diagonal regions of low RMSD between two structures suggest that the trajectory is revisiting previously explored states, a necessary condition for obtaining good statistical averages. The same analysis is shown in b) for non-correlated configurations directly extracted from the trajectory at T=300 K (= 50 configurations), showing the occupation of different states as blocks of similar RMSD values along the diagonal. In c) and d) we show the same analysis for the excited state S₁ and T₁ optimized configurations, respectively.

Supplementary Figure 3. Probability distribution of the torsion angles (θ) distributions at finite temperature obtained on classical trajectories at 300 K. Results obtained at the a) PBE and b) SCAN level of theory.

S4. Solid: Autocorrelation function of dihedral angles

Supplementary Figure 4. Dihedral angle autocorrelation function for a solid trajectory at T=300 K. The autocorrelation curve was fitted with an exponential decay of the form $\exp(-x/\tau)$. The autocorrelation functions are reported for the pairs of molecules a) #1 (blue solid line) and b) #3 (red solid line) [see Fig. 2 in the main text]. The resulting τ for molecule #1 is 65 ± 1 fs, which corresponds to ~134 molecular dynamics (MD) steps and τ for molecule #2 is 51 ± 1 fs, which corresponds to ~105 MD steps. The time-step in our simulations is ~ 0.4838 fs. We sampled configurations every 250 steps, generating an ensemble of 84 configurations (see main text)

S5. Solid: Pairwise Root-Mean Square Deviation (RMSD)

Supplementary Figure 5. The pairwise Root Mean Square Deviation $(RMSD)^{1.2}$ computed for a trajectory of 21000 first principles molecular dynamics (FPMD) steps at 300 K a) Off diagonal regions of low RMSD between two structures suggest that the trajectory is revisiting previously explored states, a necessary condition for obtaining good statistical averages. The same analysis is shown in b) for non-correlated configurations directly extracted from the trajectory at T=300 K (84 configurations), showing the occupation of different states as blocks of similar RMSD values along the diagonal. In c) and d) we show the same analysis for the excited state S₁ and T₁ optimized configurations, respectively.

S6. Vibrational Density of States (VDOS)

Supplementary Figure 6. The Vibrational Density of States³⁻⁵ (VDOS) calculated for the solid at the PBE and SCAN level of theory at T=300 K are reported in the a) and c) panels, respectively, while the VDOS at T=400 K are reported in b) and d) panels, respectively. The results show that PBE and SCAN yield a similar description of low frequency modes and that temperature has a weak influence on the spectra between 300 and 400 K.

S7. Intersystem Crossing (ISC) and reverse Intersystem Crossing (rISC) Data Summary

The direct and reverse intersystem crossing rates between an initial state Ψ_i (*e.g.*, singlet) and a final state Ψ_f (*e.g.*, triplet) were computed with the ORCA code⁶. We report "*verbatim*" the explanation about the rates' calculation given in the Orca manual (newest version v5.0.2, Section 9.39):

"Intersystem crossing (ISC) rate between a given initial state i and a final state f can be calculated from Fermi's Golden rule:

$$k(\omega)_{if} = \frac{2\pi}{\hbar} \left| \left\langle \Psi_f \middle| \widehat{H}_{SO} \middle| \Psi_i \right\rangle \right|^2 \delta(E_i - E_f),$$

which is quite similar to the Equation

$$k(\omega)_{if} = \frac{4\omega^3 n^2}{3\hbar c^3} |\langle \Psi_i | \hat{\mu} | \Psi_f \rangle|^2 \delta \left(E_i - E_f \pm \hbar \omega \right)$$

[...] for Fluorescence, except for the frequency term. The same trick used there can be applied here to switch to the time domain. Then, we are left with a simple time integration, which is not any more difficult to solve than the equations above [...]. Orca can use all the infrastructure already presented to compute these ISC rates, including Duschinsky rotation, vibronic coupling effects, use of different coordinate systems and so on. Right now, its use is optimized for CIS/TDDFT [...], but it can be applied in general by combining simpler methods to obtain the geometries and Hessians with more advanced methods to compute the SOC matrix elements, when needed."

The Hessian for the initial and final states of every configuration used to estimate the ISC/rISC has been calculated in Orca, starting from the geometries employed obtained from Qbox, after a careful convergence was achieved, both in S_1 and T_1 states. Once Hessians from these geometries in Orca were obtained and employing the total energy differences obtained from Qbox @B3LYP level as input parameter, the non-radiative rates were calculated. In every calculation of the rates the SOC matrix elements and vibrational effects were properly included in order to account for the vibrational effects relevant for light atom elements.

The full set of equations used by Orca for estimating the rates and the methodology therein are reported in the Orca manual (newest version 5.0.2), and in "*de Souza, Neese and Izsak, J. Chem. Phys. 148, 034104 (2018)*" and "*de Souza, Farias, Neese and Izsak, J. Chem. Theory Comput., 15, 3, 1896-1904, (2019)*", respectively.

			I	II	III	IV
	$k_{\rm ISC}$ [s ⁻¹]	k_{rISC} [s ⁻¹]	k_{rISC} / k_{ISC}	θ @optS ₁ [°]	θ @optT ₁ [°]	$\Delta E_{ST} [eV]$
Exp. ⁷	2.50 x10 ⁷	4.50 x10 ⁵	0.02	-	-	-
a)	2.93 x10 ⁶	5.63 x10 ⁵	0.20	80.9	75.3	0.28
b)	4.70x10 ⁵	1.43x10 ⁵	0.30	63.0	62.7	0.32
c)	5.80x10 ⁶	8.32x10 ⁴	0.01	73.9	73.9	0.13

Supplementary Table S1. Comparison between experimental and theoretical intersystem crossing (k_{ISC}) and reverse intersystem crossing (k_{rISC}) rates for three configurations: a) equilibrated gas phase molecule at T=0 K, b) a molecule extracted from first principles molecular dynamics trajectories for the molecule at T=300 K, and c) a molecule extracted from first principles molecular dynamics trajectories for the solid at T=300 K which displayed the largest value of the oscillator strength f_{OS} . These rates are all estimated in 'gas phase conditions', *i.e.*, without accounting for any effect from solvent/embedding matrices. In **I**) we show the ratio between *r*ISC and ISC rates; in **II**) the dihedral angle of each optimized model in the singlet excited state (S₁); in **III**) the dihedral angle of each optimized model in the singlet excited state (S₁); in **III**) the dihedral angle of each optimized model in the singlet and triplet state ΔE_{ST} .

f_{os} (Solid) / f_{os} (Gas)	Absorption	Emission@optS1	Emission@optT1
@PBE	0.3	0.2	0.1
@B3LYP	0.3	0.3	0.2

Supplementary Table S2. Ratio of the oscillator strength (f_{OS}) between high packing (solid)- and gas phase (molecule) limits computed at the PBE and B3LYP level of theory., computed for the singlet (S1) and triplet (T1) states in emission and absorption, at optimized (opt) geometries.

S8. Molecule: HOMO-LUMO Gap Distribution at the PBE Level of theory

Supplementary Figure 7. Probability distributions of the HOMO-LUMO Gap (E_{Gap}) of the isolated molecule at 300K as obtained on classical (CL) and quantum (QT) trajectories at the PBE level of theory. Averages values are indicated.

S9. Molecule: ΔE_{ST} and f_{OS} distributions for the Classical (CL) and Quantum (QT) sampled configurations at PBE level

Supplementary Figure 8. Probability distribution of the vertical (V) and adiabatic (A) singlet-triplet energy difference (ΔE_{ST}) at 300 K for classical (a) and quantum mechanical (b) trajectories. Probability distribution of the oscillator strength (f_{OS}) between HOMO and LUMO states of the molecule at 300 K computed on classical (c) and quantum (d) trajectories. The results shown in blue correspond to the values at T=0 K. All data obtained at the PBE level of theory.

S10. Solid: HOMO-LUMO gap as a function of temperature at T=0 K and T=300 K for the high packing fraction system at PBE level.

Supplementary Figure 9. Probability distributions of the HOMO-LUMO gap obtained on classical (a) and quantum (b) trajectories at 300 K for the solid. Results obtained at the PBE level of theory.

S11. $f_{\rm OS}$ for the Classical sampled configuration and $f_{\rm OS}$ for the Quantum sampled configurations at PBE level

Supplementary Figure 10. Oscillator strength (f_{os}) in the solid at finite temperature. f_{os} distribution calculated for classical (a) and quantum (b) trajectories at 300 K. Results obtained at the PBE level of theory.

Supplementary Figure 11. Distribution of the energy difference between singlet and triplet (ΔE_{ST}) as a function of the torsion angle θ angle of the 'blue' and 'red' pair of molecules (see Figure 2b of the main text for definition of the two pairs of molecules). a) the ΔE_{ST} vs θ for classical trajectories and b) the ΔE_{ST} vs θ for quantum trajectories.

S13. Solid: Potential transitions at PBE level

Supplementary Figure 12. The HOMO-LUMO transitions are represented in blue (solid black line with blue contour) when they occur between levels localized on pair 1-2, and in red (solid black line with red contour), when they occur between levels localized on pair 3-4 (see Fig. 2 of the main text for the definition of the pairs of molecules). Mixed transitions are indicated by dashed lines with blue or red contour. The relative percentages of each transition over the whole trajectory are reported at the bottom of the graph. These transitions have been calculated at the PBE level of theory.

S14. Cartesian coordinates of the \mathbf{S}_0 optimized structure of the NAI-DMAC in the gas phase limit

73 XYZ file C 11.766409 10.814050 12.402004 C 12.587904 11.619721 13.215137 C 13.970485 12.100214 12.775286 C 14.307940 11.617499 11.364817 C 13.427602 10.829289 10.596981 C 13.796862 10.443308 9.294465 C 15.023335 10.812462 8.759520 C 15.908913 11.579346 9.512168 C 15.535473 11.969666 10.793941 C 12.107094 11.974958 14.479976 10.866809 11.563206 14.956500 С 10.070556 10.757639 14.146701 С 10.515699 10.385258 12.885989 С C 15.030373 11.557173 13.764793 С 14.001335 13.648057 12.798305 11.330526 9.598583 10.327577 С 10.297626 10.179936 9.536351 С С 9.454224 9.311345 8.774654 9.669228 7.913207 С 8.803283 С 10.688687 7.385406 9.576410 11.511875 8.227697 10.340013 С 10.069285 11.575535 9.474491 С С 9.047604 12.086720 8.700569 С 8.211822 11.230989 7.962209 С 8.408252 9.861320 7.994965 С 8.814872 6.996302 8.010205 С 7.506746 8.982991 7.211465 С 6.906448 6.726898 6.512052 С 5.759986 6.205817 7.095523 С 4.916584 5.380513 6.352876 5.196994 5.058985 5.020302 С С 6.366423 5.596153 4.460274 С 7.214058 6.420399 5.190168 С 4.285858 4.163088 4.171873 C 3.064199 3.663969 4.955531 C 3.783510 4.960770 2.950426 C 5.082851 2.934974 3.686300 H 13.113323 9.844862 8.696813 H 15.282314 10.497178 7.749374 H 16.875666 11.874255 9.107453 H 16.228907 12.575204 11.377464 H 12.731205 12.598169 15.120333 H 10.531258 11.864148 15.947542 H 9.097082 10.412404 14.493205 H 15.030532 10.460031 13.770773 H 14.827645 11.903942 14.785946 H 16.036285 11.897275 13.487981 H 13.260170 14.062773 12.103601 H 14.989573 14.025572 12.507152 H 13.778975 14.030704 13.802365 H 10.831671 6.305779 9.581225 H 12.307917 7.807848 10.953329 H 10.712501 12.239176 10.049759 H 8.883612 13.162642 8.661570 H 7.397789 11.622473 7.353761 H 5.521380 6.447228 8.130540

Η	4.023703	4.988393	6.834797
Η	6.626195	5.371253	3.426104
Η	8.114771	6.829823	4.734705
Η	2.433579	4.493559	5.302512
Η	3.355035	3.063247	5.827826
Η	2.446809	3.028374	4.306919
Η	3.206548	5.840103	3.266080
Η	3.134474	4.330308	2.326368
Η	4.613418	5.311455	2.324092
Η	5.449041	2.343460	4.535946
Η	5.950701	3.225175	3.080921
Η	4.443817	2.288426	3.068486
Η	9.886614	9.751833	12.265159
0	8.984685	5.785598	7.984328
0	6.576929	9.409032	6.541580
Ν	12.182978	10.434629	11.115363
Ν	7.773293	7.597341	7.273326

Supplementary Figure 13. Optimized cartesian coordinates of the NAI-DMAC gas phase molecule in the ground state at PBE level of theory.

S15. Cartesian coordinates of the S_{0} optimized structure of the NAI-DMAC in the high packing fraction limit

292				
XY	Z file			
С	-0 101602	0 673916	10 442055	
č	5 878603	9 339025	10 509105	
Ċ	1 205229	2 810070	6 696170	
Č	-1.393338	5.810979	0.0801/0	
С	7.168510	6.200158	14.262384	
С	-0.120497	2.585933	8.370012	
С	5.894039	7.426208	12.580130	
С	0.984849	4.284592	6.992564	
č	1 788588	5 725380	13 956520	
č		2.041920	10.755701	
Č	-0.201945	2.041639	10.755791	
C	6.038618	7.9/1526	10.194086	
С	-0.287664	3.019859	9.715180	
С	6.064117	6.993341	11.234644	
С	-1.507894	4.846578	5.736297	
Ċ	7 281859	5 164161	15 212204	
c	0.024470	5 268247	6 005608	
č	0.924470	3.306347	14.950000	
Č	4.849/61	4.641445	14.852893	
С	-0.427893	2.453009	12.097097	
С	6.203076	7.561418	8.852092	
С	7.830980	3.028326	7.001030	
С	-2.057655	6 982811	13 947100	
č	-0.391062	1 469798	13 189107	
č	6 162220	0 5 1 2 0 7 0	7 750970	
C	0.102329	8.343878	7.759870	
C	2.211164	3.936923	7.583125	
С	3.562220	6.072679	13.366699	
С	6.609856	3.246876	6.378189	
С	-0.836314	6.764155	14.569783	
С	-0 139703	-0 356922	11 502408	
č	5 916818	10 370598	9 // 9533	
č	0.022017	1 242252	2. 11 /333	
Č	0.033917	1.242333	8.089348	
C	5.739943	8.769419	12.861123	
С	-3.052667	10.376795	16.081114	
С	8.830549	-0.364759	4.868975	
С	6.198949	9.297480	0.316464	
С	-0.420273	0.711487	20.635212	
č	1 311/0/	1 80/1750	18 178244	
č	1 161961	11 012241	2 760200	
Č	1.404604	11.013241	2.709200	
C	-0.514787	4.369790	10.061791	
С	6.292139	5.643410	10.887303	
С	4.420383	-1.030035	16.929384	
С	1.351090	11.034610	4.014883	
С	2.175987	9.004744	16.899750	
Č	3 603482	1 000519	4 052455	
c	1 186222	0.070238	14 500775	
c	4.160333	-0.970238	14.309773	
Č	1.583399	10.9/1849	6.435340	
С	2.098289	6.091301	5.862770	
С	3.675889	3.918301	15.085943	
С	6.202494	8.705277	1.592839	
С	-0.424348	1.303637	19.358837	
Ċ	2,277272	8 936533	19 357248	
č	3 501990	1 07/07/	1 50/056	
C	3.301000	1.074074	1.374730	
Č	-0.663059	3.782303	12.400739	
С	6.441259	6.232750	8.548345	
С	4.373868	0.587660	12.181395	
С	1.401892	9.423000	8.768482	
С	-1.880380	10.248945	15.329893	
С	7.657913	-0.234740	5.619349	

С	2.245733	7.513576	19.285280
С	3.533631	2.497032	1.668512
С	2.230545	6.881685	18.052298
С	3.548977	3.126223	2.902553
С	0.027673	0.290363	9.119327
Ċ	5 748410	9 722361	11 831715
č	2 287802	9.677699	18 137/07
c	2.287802	9.077099	2 912651
C	3.490707	0.550560	2.015051
C	1.098887	0.005150	20.843297
Č	4.6/9524	4.005187	0.105851
C	-0.365349	5.803270	5.411382
С	6.139738	4.207232	15.538019
С	7.604201	5.032849	5.122451
С	-1.830109	4.979018	15.826050
С	-0.624853	-0.831594	13.882435
С	6.398184	10.844847	7.067707
С	0.289989	-1.814276	14.238995
С	5.486094	11.829275	6.709983
Ċ	4.883414	8.406504	2.292941
Č	0 893780	1 603151	18 657677
\tilde{c}	3 359653	0.807268	13 118144
č	2 415705	0.007200	7 822268
C	2.413793	9.202380	1.032300
C	2.043439	9.707705	5 204499
Č	3./31014	0.231024	5.504488
C	2.292777	9.649282	20.577532
C	3.484417	0.363918	0.373086
С	3.358473	4.673008	7.323828
С	2.415006	5.337038	13.625784
С	2.170537	7.620469	16.863237
С	3.610361	2.384846	4.091085
С	3.806473	8.116065	1.248874
С	1.971144	1.894198	19.702272
С	-3.391869	9.460630	17.258533
С	9.169328	0.550189	3.689969
С	-1.810051	-0.692949	14.605873
Č	7 585393	10 705991	6 346967
\tilde{c}	3 258051	0.035728	14 273550
č	2 515280	0.055728	6 674528
c	2.515260	4 725251	0.074528
C	-0./13913	4.755551	0.572261
C	6.493065	5.279225	9.573301
C	6.492432	4.256017	5.425141
C	-0./1830/	5.755278	15.522990
Č	3.309575	5.766862	6.462328
С	2.464549	4.243216	14.486385
С	4.267001	-1.864547	20.590233
С	1.510902	11.877853	0.357210
С	-2.065591	-1.521111	15.687882
С	7.842414	11.532936	5.264271
С	4.667248	6.901159	20.559011
С	1.111110	3.107702	0.392136
С	5.189156	-1.222655	13.582180
Ċ	0 583254	11 228341	7 364046
\tilde{c}	4 525737	1 422701	10 914042
\tilde{c}	1 250547	8 5885/11	10.036301
č	0.000743	5 0015/13	10.050571
č	5 770790	1 100/25	0.072644
C	1 257004	4.109433	0.772044
C	4.33/924	-1.141102	19.3921/0
C	1.418823	11.152775	1.354209
C	5.2/2618	-0.455878	12.430584
C	0.502396	10.465691	8.518711
С	2.702609	7.308731	1.533042
С	3.074373	2.701723	19.416517

С	-1.092436	5.105292	20.303947
С	6.870635	4.906376	0.644554
С	-0.747044	7.216755	5.914630
Ċ	6.522121	2.793270	15.036253
č	7.435477	8.511651	2.219914
\tilde{c}	-1 657225	1 496786	18 731762
č	3 764050	2 750936	11 010630
c	2 012033	7 250080	0.030555
č	2.012033	7.259909	3 301023
c	0.759940	7.230109	17 640065
C	0.736640	2.731403	0.259709
C	8.019299	9.455058	0.558/98
C	-2.840994	0.555580	20.392348
C	-0.135/3/	5.860482	3.883647
C	5.910604	4.152197	17.065912
C	4.4/3831	9.676794	3.080356
C	1.303892	0.333126	17.870260
C	-2.213762	8.563251	17.650124
С	7.990935	1.447144	3.298907
С	-3.806533	10.294190	18.485165
С	9.583091	-0.284218	2.463865
С	1.635259	7.159339	0.653021
С	4.142359	2.851480	20.295481
С	5.786405	8.556372	16.844715
С	-0.009211	1.454553	4.103785
С	3.984926	0.612632	9.720472
С	1.792109	9.398505	11.229723
С	8.639726	8.878107	1.625648
С	-2.861579	1.130596	19.324970
С	6.015805	1.716924	10.666450
С	-0.239402	8.295012	10.284236
Н	7.920041	2.227680	7.730766
Н	-2.146557	7.783403	13.217471
Н	2.261489	3.082302	8.251476
Н	3.511948	6.929258	12.699988
Н	5.756876	2.617684	6.632194
Н	0.016720	7.393399	14.315566
Н	0.132556	0.922200	7.054477
Н	5.639293	9.088566	13.896881
Н	-0.551088	5.118576	9.273846
н	6 326379	4 894104	11 674337
н	2.050663	6 960474	5 207649
н	3 723144	3 049392	15 741382
н	-0.826311	4 069117	13 438191
н	6 604669	5 946677	7 510628
н	-1 151174	9 485078	15 585486
н	6 929056	0 528/192	5 361639
ц	2 240384	5 703803	18 017002
и П	2.249304	<i>J.195</i> 805	2 040124
п п	0.007683	4.214212	2.940124
п	5 676706	-0.700980	0.003043
п	3.070700	5 926140	12.006413
п	1.497224	3.830140	4.590420
H	-1./23215	4.1/0425	10.555139
н	-0.081/94	10.948306	13.081/18
H	0.45801/	-0.952019	1.20//30
H	2.040415	1.014/93	12.972303
H	3.131149	8.396/6/	/.98106/
H	4.9/9195	11.848167	0.658842
H	0.797470	-1.832/97	20.293364
H	4.292801	4.390957	1.803/92
H	1.479895	5.620021	13.14/355
H	2.139844	/.11/486	15.89/489
Н	3.641054	2.887564	5.056833

Н	7.824585	0.076475	14.330542
Η	-2.048026	9.937414	6.622669
Η	2.466495	0.235228	14.993072
Η	3.308159	9.772522	5.955905
Н	-0.926274	5.770572	11.626394
н	6 704156	4 243846	9 321472
н	5 540813	1.215010	1 030885
11 11	0.022152	5 55 45 40	16 009615
п	4 109765	6 262721	6 264416
H	4.198/03	0.303721	0.204410
H	1.5/5360	3.646304	14.685250
H	6.999987	1.427035	0.683/13
Н	-1.222084	8.587699	20.263201
Η	7.361026	-1.375059	16.241453
Η	-1.584996	11.384978	4.710222
Η	4.655976	7.337677	19.564157
Η	1.121853	2.671131	1.387519
Н	4.005988	10.869459	13.769297
Н	1.767343	-0.863032	7.177246
Н	-0.001272	6.435112	19.031277
н	5 780424	3 577082	1 919342
н	4 444932	-0.056349	19 399584
ц Ц	1 330082	10.067803	1 545743
11 11	6.057080	0.669607	11 707002
п	0.037080	-0.008007	0.242(92
H	-0.280098	10.681066	9.243083
Н	2.659217	6.794895	2.489795
Н	3.116337	3.215554	18.459236
Н	-1.922715	5.022398	19.604376
Η	7.701311	4.989986	1.344126
Η	7.454686	8.086680	3.221118
Η	-1.676275	1.922245	17.730558
Η	-3.548453	6.988261	20.719353
Η	9.326652	3.020388	0.231266
Н	0.796513	6.515119	0.909672
Н	4.980036	3.497076	20.038830
Н	-0.773768	8.727979	2.155355
н	6 551967	1 281940	18 795792
н	0.042276	7 943998	5 688671
н	5 732959	2 066181	15 262212
ц Ц	0.007755	7 206480	7.000501
11 11	-0.907733	2 200409	12 050497
п	0.065205	2.802790	5 441545
H	-1.0/3803	7.559291	3.441343
H	7.450933	2.451422	15.509496
H	3.999848	3.392929	10.161806
Н	1.776234	6.617890	10.788018
Н	4.027527	3.306043	11.929401
Η	1.748503	6.705252	9.020371
Η	2.677107	2.600650	11.024984
Η	3.098817	7.410248	9.924734
Н	5.334956	6.330277	2.809418
Н	0.441333	3.679113	18.140671
Н	4.064671	7.074459	3.808504
н	1 711359	2,935619	17 141584
н	5 727383	7 512522	4 094260
н	0.048684	2 496402	16 856358
ц	0.210//7	1 802675	3 50/757
11 LT	5 554001	5 110205	5.50+757 17 AA2745
п	0.60(520	5.119295	1/.443/43
H	0.000538	0.02/022	3.033992
H	5.168322	5.585420	17.315155
H	-1.055660	6.123422	3.348120
Η	6.830738	3.889726	17.601439
Η	4.353602	10.541046	2.414651
Η	1.424015	-0.531021	18.534908

Η	5.238746	9.920533	3.828613
Η	0.538702	0.089704	17.122005
Η	3.516814	9.503964	3.585721
Η	2.260645	0.506166	17.364368
Н	-1.895727	7.911570	16.828312
Н	7.673137	2.099090	4.120719
Н	-2.515975	7.911517	18.480932
Н	8.292852	2.099090	2.468098
Н	-1.346441	9.154501	17.975039
Н	7.123709	0.856053	2.973992
Н	-1.111643	-1.907411	18.788383
Н	6.887726	11.917912	2.161176
Н	-4.027623	9.632824	19.334496
Н	9.804023	0.376619	1.614006
Н	7.548461	-1.990492	18.299423
Н	-1.772008	11.999988	2.649606
Н	4.907653	9.145611	16.561077
Н	0.869435	0.865578	4.387953
Н	5.495939	7.901515	17.677641
Н	0.281360	2.109674	3.271919
Н	6.058719	7.915750	15.998562
Н	-0.282160	2.094857	4.950469
Н	4.136535	1.144984	8.773245
Н	1.640765	8.866576	12.176950
Н	2.910789	0.418424	9.830541
Н	2.866153	9.592713	11.118595
Н	4.487379	-0.358832	9.631041
Н	1.289920	10.370445	11.318783
Н	6.575301	0.811602	10.406815
Н	-0.798742	9.200222	10.543930
Н	6.496933	2.175721	11.542096
Н	-0.720850	7.836358	9.408787
Н	6.106503	2.408130	9.821016
Н	-0.330420	7.603642	11.129443
0	4.710301	0.161143	16.907160
Ō	1.059514	9.843696	4.032875
Ō	1.765981	9.241604	14.572641
õ	4.012536	0.748630	6.380306
Ō	-0.380849	1.794184	14.372506
Ō	6.157408	8.219583	6.576630
õ	-1.882497	11.339368	11.276290
Ō	5.773818	11.565216	9.678667
Ň	2.237107	6.755847	20.491804
N	3.542098	3.253755	0.460929
N	-0.168652	3.548507	7.312716
N	5.940924	6.463159	13.637214
N	-0.386511	0.105579	12.815349
N	6.151270	9.907621	8.133999
N	4.155270	-1.730136	15.732915
N	1.614092	11.731377	5.212411

Supplementary Figure 14. Optimized cartesian coordinates of the NAI-DMAC crystal in the ground state at PBE level of theory.

References

- 1. N. Michaud-Agrawal, E. J. Denning, T. B. Woolf and O. Beckstein, *Journal of Computational Chemistry*, 2011, **32**, 2319-2327.
- 2. A. Grossfield, P. N. Patrone, D. R. Roe, A. J. Schultz, D. W. Siderius and D. M. Zuckerman, *Living journal of computational molecular science*, 2018, **1**.
- 3. M. Brehm and B. Kirchner, *Journal of Chemical Information and Modeling*, 2011, **51**, 2007-2023.
- 4. M. Brehm, M. Thomas, S. Gehrke and B. Kirchner, *The Journal of Chemical Physics*, 2020, **152**, 164105.
- 5. M. Thomas, M. Brehm, R. Fligg, P. Vöhringer and B. Kirchner, *Physical Chemistry Chemical Physics*, 2013, **15**, 6608.
- 6. F. Neese, *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 2012, **2**, 73-78.
- 7. T. Chen, C.-H. Lu, C.-W. Huang, X. Zeng, J. Gao, Z. Chen, Y. Xiang, W. Zeng, Z. Huang and S. Gong, *Journal of Materials Chemistry C*, 2019, **7**, 9087-9094.