Electronic Supplementary Materials

NMR studies of inclusion complexes: naphthalene and natural cyclodextrins

Sylwia Jopa,^a Jacek Wójcik,^b Andrzej Ejchart^b and Michał Nowakowski^{*a}

^a Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.

^b Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland.

* Correspondence: lyam@chem.uw.edu.pl

Contents:

Tables S1 – S3. Chemical shifts of apparent signals of naphthalene (NP) upon complexation with α CD, β CD, and γ CD.

Figure S1. Selected ¹H NMR spectra of naphthalene titrated with α CD.

Figures S2, S3. Confidence limits determined for parameters of NP/ α CD complex.

Figures S4, S5. Experimental data and lines depicting the best fit of 1:1 and 1:2 models for the NP/ α CD complex

Figure S6. Selected ¹H NMR spectra of naphthalene titrated with β CD.

Figures S7 – S10. Experimental data and lines depicting the best fit of 1:1, 2:1, 2:2, and mixed models for the NP/ β CD complex.

Figure S11. Selected ¹H NMR spectra of naphthalene titrated with γ CD.

Figures S11 – S15. Experimental data and lines depicting the best fit of 1:1, 2:1, 2:2, and mixed models for the NP/ γ CD complex.

R	Hα(1)	Ηα(2)	Ηα(3)	Ηα(4)	Hβ(1)	Ηβ(2)	Ηβ(3)	Ηβ(4)
0.00	7.9080	7.9041	7.9006	7.8965	7.5204	7.5166	7.5127	7.5088
19.46	7.9093	7.9053	7.9018	7.8978	7.5211	7.5173	7.5134	7.5093
41.41	7.9109	7.9069	7.9033	7.8992	7.5221	7.5182	7.5143	7.5103
60.19	7.9132	7.9093	7.9057	7.9017	7.5236	7.5198	7.5159	7.5121
74.55	7.9147	7.9106	7.9071	7.9030	7.5245	7.5206	7.5168	7.5129
150.21	7.9246	7.9209	7.9172	7.9131	7.5309	7.5274	7.5233	7.5196
441.38	7.9677	7.9635	7.9603	7.9562	7.5595	7.5559	7.5520	7.5481
662.34	7.9940	7.9903	7.9871	7.9831	7.5772	7.5734	7.5697	7.5661
1291.54	8.0371	8.0331	8.0299	8.0259	7.6057	7.6020	7.5982	7.5946

Table S1. Chemical shifts of apparent signals of naphthalene (NP) upon complexation with α CD. NP concentration, $c(NP) = 47 \ \mu \text{mol/dm}^3$. Host to guest ratio $R = c(\alpha$ CD)/c(NP).

Table S2. Chemical shifts of apparent signals of naphthalene (NP) upon complexation with β CD for three independent measurements. NP concentration, $c(NP) = 53 \ \mu mol/dm^3$. Host to guest ratio $R = c(\beta$ CD)/c(NP).

 $NP/\beta CD - 1st$ measurement

R	Ηα(1)	Ηα(2)	Ηα(3)	Ηα(4)	Ηβ(1)	Ηβ(2)	Hβ(3)	Ηβ(4)
0.00	7.9035	7.8992	7.8956	7.8912	7.5158	7.5118	7.5076	7.5036
0.83	7.9027	7.8984	7.8947	7.8904	7.5171	7.5129	7.5089	7.5048
2.38	7.9014	7.8971	7.8934	7.8891	7.5191	7.5150	7.5109	7.5068
3.74	7.9008	7.8965	7.8929	7.8886	7.5207	7.5166	7.5125	7.5084
5.60	7.8986	7.8943	7.8907	7.8863	7.5211	7.5170	7.5130	7.5088
9.33	7.8961	7.8918	7.8881	7.8839	7.5222	7.5181	7.5140	7.5099
12.38	7.8931	7.8888	7.8851	7.8808	7.5219	7.5179	7.5138	7.5097
16.94	7.8905	7.8861	7.8826	7.8782	7.5218	7.5179	7.5137	7.5097

 $NP/\beta CD - 2nd$ measurement

R	Hα(1)	Ηα(2)	Ηα(3)	$H\alpha(4)$	Ηβ(1)	Ηβ(2)	Ηβ(3)	Ηβ(4)
0.00	7.9031	7.8991	7.8958	7.8916	7.5155	7.5117	7.5078	7.5040
0.83	7.9022	7.8981	7.8947	7.8906	7.5166	7.5127	7.5088	7.5049
2.38	7.9008	7.8967	7.8932	7.8892	7.5186	7.5146	7.5107	7.5068
3.74	7.8999	7.8958	7.8923	7.8882	7.5197	7.5158	7.5120	7.5081
5.60	7.8982	7.8942	7.8907	7.8867	7.5206	7.5168	7.5130	7.5091
9.33	7.8953	7.8915	7.8881	7.8841	7.5214	7.5176	7.5138	7.5100
12.38	7.8925	7.8890	7.8855	7.8817	7.5214	7.5178	7.5142	7.5104
16.94	7.8905	7.8867	7.8834	7.8797	7.5218	7.5181	7.5146	7.5114

 $NP/\beta CD - 3rd$ measurement

R	Ηα(1)	Ηα(2)	Ηα(3)	Ηα(4)	Ηβ(1)	Ηβ(2)	Ηβ(3)	Ηβ(4)
0.00	7.9031	7.8991	7.8956	7.8916	7.5155	7.5116	7.5078	7.5039
0.83	7.9023	7.8982	7.8947	7.8907	7.5167	7.5128	7.5089	7.5050
2.38	7.9008	7.8967	7.8932	7.8892	7.5186	7.5146	7.5107	7.5068
3.74	7.9001	7.8960	7.8925	7.8885	7.5199	7.5160	7.5122	7.5083
5.60	7.8984	7.8943	7.8909	7.8868	7.5208	7.5170	7.5130	7.5093
9.33	7.8957	7.8917	7.8882	7.8842	7.5215	7.5178	7.5139	7.5103
12.38	7.8923	7.8885	7.8856	7.8818	7.5211	7.5177	7.5140	7.5110
16.94	7.8904	7.8871	7.8835	7.8801	7.5217	7.5182	7.5151	7.5118

R	Ηα(1)	Ηα(2)	Ηα(3)	Ηα(4)	Ηβ(1)	Ηβ(2)	Ηβ(3)	Ηβ(4)
0.00	7.9031	7.8989	7.8955	7.8913	7.5154	7.5114	7.5076	7.5037
9.23	7.9026	7.8987	7.8950	7.8908	7.5164	7.5125	7.5087	7.5047
18.98	7.9020	7.8980	7.8944	7.8903	7.5181	7.5142	7.5103	7.5064
29.73	7.9012	7.8971	7.8935	7.8893	7.5212	7.5172	7.5134	7.5095
39.70	7.9002	7.8962	7.8925	7.8883	7.5236	7.5199	7.5159	7.5122
52.37	7.8995	7.8954	7.8918	7.8878	7.5262	7.5222	7.5182	7.5144
64.51	7.8989	7.8948	7.8911	7.8873	7.5281	7.5244	7.5205	7.5166
146.24	7.8948	7.8910	7.8879	7.8839	7.5411	7.5373	7.5333	7.5299
307.91	7.8903	7.8860	7.8826	7.8786	7.5601	7.5562	7.5527	7.5488

Table S3. Chemical shifts of apparent signals of naphthalene (NP) upon complexation with γ CD. NP concentration, $c(NP) = 53 \ \mu mol/dm^3$. Host to guest ratio $R = c(\gamma CD)/c(NP)$.

¹H NMR spectra of naphthalene titrated with α CD. Ratios $R=c(\alpha$ CD)/c(NP) are equal to: 0.0, 74.6, 441.4, and 1291.5 from top to bottom, respectively. NP complexation by α CD results in the deshielding of both proton groups. Signal-to-noise ratios (S/N) for H α and H β protons are *ca*. 90 and fluctuate within the range ±15%. In order to determine values of integrals the following integration ranges have been used: H α (NP) and H β (NP) – 0.1 ppm, H1(CD) – 0.08 ppm. Integrated signals have always been placed in the centre of a range.

Determination of confidence limits of association constants estimated for NP/ α CD complex by the use of an *F*-statistics. Horizontal line represent $RSS_{lim} = 3.8234$, which has been calculated by the formula: $RSS_{lim} = RSS_{min} [1 + F(1, DF, 0.3173)/DF]$. $RSS_{min} = 3.766$ has been found in the minimization procedure (Table 2), DF = 66 is the number of degrees of freedom and *F* is the value of an *F*-distribution.

Figure S3

Determination of confidence limits of association constants estimated for NP/ α CD complex by the use of an *F*-statistics. Horizontal lines represent *RSS*_{*lim*}. Calculation of *RSS*_{*lim*} is explained in the caption to Figure S2.

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ α CD complex assuming 1:1 stoichiometry (complex parameters – *cf*. Table 2).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ α CD complex assuming 1:2 stoichiometry (complex parameters – *cf.* Table 2). The sigmoidal shape of titration curves precisely fits to the experimental data proving a composite stoichiometry of the studied complexes.

¹H NMR spectra of naphthalene titrated with β CD. Ratios $R=c(\beta$ CD)/c(NP) are equal: 0.0, 5.6, 9.3, and 16.9 from top to bottom, respectively. NP complexation by β CD results in the shielding of H α protons (left side) while H β protons are deshielded. Signal-to-noise ratios (S/N) for H α and H β protons are *ca*. 90 and fluctuate within the range ±15%. In order to determine values of integrals the following integration ranges have been used: H α (NP) and H β (NP) – 0.1 ppm, H1(CD) – 0.08 ppm. Integrated signals have always been placed in the centre of a range.

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ β CD complex assuming 1:1 stoichiometry (complex parameters – *cf.* Table 3).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ β CD complex assuming 2:1 stoichiometry (complex parameters – *cf.* Table 3).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ β CD complex assuming 2:2 stoichiometry (complex parameters – *cf.* Table 3).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ β CD complex assuming simultaneous 2:1 and 2:2 stoichiometry (complex parameters – *cf.* Table 3).

¹H NMR spectra of naphthalene titrated with γ CD. Ratios $R=c(\gamma$ CD)/c(NP) are equal: 0.0, 39.7, 146.2, and 307.9 from top to bottom, respectively. NP complexation by γ CD results in shielding of H α protons (left side) while H β protons are deshielded like in NP/ β CD complex. Signal-to-noise ratios (S/N) for H α and H β protons are *ca*. 90 and fluctuate within the range $\pm 15\%$. In order to determine values of integrals the following integration ranges have been used: H α (NP) and H β (NP) – 0.1 ppm, H1(CD) – 0.08 ppm. Integrated signals have always been placed in the centre of a range.

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ γ CD complex assuming 1:1 stoichiometry (complex parameters – *cf.* Table 4).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ γ CD complex assuming 2:1 stoichiometry (complex parameters – *cf.* Table 4).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ γ CD complex assuming 2:2 stoichiometry (complex parameters – *cf*. Table 4).

Symbols labeled with colors and shapes correspond to the experimental data obtained for each of 4 distinctive maxima in a symmetric multiplets of H α (upper part) and H β (lower part) protons. Color coded lines represent the best fit curves for the NP/ γ CD complex assuming simultaneous 2:1 and 2:2 stoichiometry (complex parameters – *cf.* Table 4).