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DFT calculation 

To assess the accuracy of the calculation, we have  performed some preliminary 

calculations. Since we mainly focused on the cation– interaction, simple systems, 

Li+…ethylene and Cs+…ethylene complexes, were chosen as the model systems for 

the preliminary calculation.  First, geometry-optimization calculation was 

performed by M06/6-31G(d,p), 6-31+G(d,p), 6-

311+G(d,p), and aug-cc-pVTZ methods. As shown 

in Fig. S1, the C2v optimized structure was 

obtained. The cation– distance and interaction 

energy are listed in Table S1. The cation– 

distance is almost unchanged by adopting larger 

basis sets. In addition, the M06/6-31G(d,p) 

calculation sufficiently reproduced the interaction 

energy obtained by the most accurate M06/aug-cc-

pVTZ calculation. 

 

 

Table S1. Cation– distance [Å] and interaction energy (IE)a [kcal/mol] in Li+–

ethylene and Cs+–ethylene complexes.  

 Li+…ethylene  Cs+…ethylene 

 r(Li+–) IEa   r(Cs+– IEa  

6-31G(d,p) 2.319 -23.0  3.676 -4.8 

6-31+G(d,p) 2.326 -20.0  3.687 -3.6 

6-311+G(d,p) 2.302 -19.5  3.676 -5.3 

aug-cc-pVTZ 2.294 -20.7  3.636 -5.9 

a IE is defined as IE = 𝐸(cation– ethylene) − {𝐸(cation) + 𝐸(ethylene)}. 

 

Fig. S1. Optimized structure 

(C2v) of Li+(Cs+)…ethylene 

complex. 
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 We further checked the validity of the use of 6 -31G(d,p) basis set by drawing 

the potential energy curve along cation– distance. Fig. S2  shows the potential 

energy curves for cation–ethylene complexes. Clearly, the M06/6-31G(d,p) and the 

M06/aug-cc-pVTZ potential energy curves are similar to each other for both Li+–

ethylene and Cs+–ethylene complexes.  

 These preliminary calculations clearly demonstrated that the M06/6-31G(d,p) 

method is accurate enough for  analyzing cation– complexes. 

 

Fig. S2. Potential energy curve along cation– distance for (a) Li+…ethylene and 

(b) Cs+…ethylene complexes obtained by M06/6-31G(d,p) and M06/aug-cc-

pVTZ calculations.  
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Fig. S3. (A) 1H-NMR and (B) 13C-NMR spectra for PI used in this work.  
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Fig. S4. FT–IR bands for (C=O) of carboxy and (O−C−O−) of sodium 

carboxylate for the samples are indicated.  
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Fig. S5. FT–IR band for (O−H) of water in the indicates samples. This band 

is clearly shown in the moisture absorbed samples. On the other hands, the 

(O−H) band are completely disappeared after vacuum drying at 35 °C for 1 

day. This demonstrates complete drying of these samples by this procedure.  
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Fig. S6. TG results for the indicates samples. The weight loss from the water 

detachment was observed for the moisture absorbed samples. The TG curves 

for the samples vacuum dried at 35 °C for 2 days are overlapped with each 

other.  
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Fig. S7. DFT calculation results for cation- interaction between double bond 

in the PI unit and Li+ and Cs+. (A) Model segments used for the calculation. 

Most stable structure for each coordination in (B) PI -Li+nPI and (C) PI-

Cs+nPI. 
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Fig. S8. DSC traces for second heating process of the indicated samples.  
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Fig. S9. Temperature dependence of (A) storage modulus (G ʹ) and (B) loss 

modulus (Gʺ) for PI-Na measured at 1 Hz. Relaxations assigned to the 

network rearrangement are indicated with arrows. The relaxation temperature 

decreases with the moisture absorption of the sample.  
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Fig. S10. Temperature dependences of saturation factor, S, for PI-Na spin-

probed with 4-carboxy-TEMPO at different concentrations (4 ×10−8 mol g−1 

and 6 ×10−8 mol g−1) and for PI-Na spin-probed with 5DSA at 6 ×10−8  mol 

g−1. Tg,ESR of each sample is indicated with arrow. Each plot is vertically 

shifted to avoid overlapping.  
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