# **Supporting Information:**

## Hydrogen Bond Redistribution Effects in Mixtures of Protic Ionic Liquids Sharing the Same Cation: Nonideal Mixing with Large Negative Mixing Enthalpies

Benjamin Golub<sup>†</sup>, Daniel Ondo<sup>‡</sup>, Viviane Overbeck<sup>†</sup>, Ralf Ludwig<sup>†,\$</sup>, and Dietmar Paschek<sup>†,\*</sup>

† Physikalische und Theoretische Chemie, Institut für Chemie, Universität Rostock, Albert-Einstein-Straβe 27, D-18059 Rostock, Germany

‡ Department of Physical Chemistry, University of Chemistry and Technology, Technická 5., 166 28 Prague 6, Czech Republic

\$ Laibniz Institut für Katalung an der Universität Postock, Albert Einstein, Studie 20a, D. 18050 Postock

\$ Leibniz-Institut f
ür Katalyse an der Universit
ät Rostock, Albert-Einstein-Stra
ße 29a, D-18059 Rostock, Germany

\*E-mail: dietmar.paschek@uni-rostock.de

## Contents

| S1 MD Simulations                                      | S2          |
|--------------------------------------------------------|-------------|
| S1.1 Outline/Results of the MD Simulations             | S2          |
| S1.2 Energies of Mixing Obtained from MD Simulation    | S5          |
| S2 <sup>1</sup> H-NMR-Spectra                          | S6          |
| S3 Experimental Determination of the Excess Enthalpies | <b>S</b> 7  |
| S3.1 Apparatus                                         | S7          |
| S3.2 Data analysis                                     | S7          |
| S3.3 Fitting by Redlich-Kister Equation                | S7          |
| S3.4 Fitting by Lattice Model                          | <b>S</b> 11 |
| References                                             | S12         |

### S1 MD Simulations

#### S1.1 Outline/Results of the MD Simulations

To study the pure PILs and mixtures we performed isobaric isothermal (NPT) MD simulations using GROMACS 5.0.6. We investigated eleven compositions between  $x_{OMs} = 0.0$  and  $x_{OMs} = 1.0$  for six temperatures between T = 300 K and T = 400 K at a pressure of 1 bar. Tables S1 to S11 contain a summary of selected properties for each performed MD simulation: the average mass density  $\rho$ , the average potential energy  $E_p$ , the fraction of hydrogen bonds of the [TEA] cations to [OMs] anions  $y_{OMs}$ , and the fraction of hydrogen bonds of the [TEA] cations  $y_{OTf}$ .

| Table S1: $x_{\rm OMs} = 0.0$ |                      |                             |              |              |  |
|-------------------------------|----------------------|-----------------------------|--------------|--------------|--|
| <i>T /</i> K                  | $ ho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |  |
| 300                           | 1245.2               | -996                        | -            | 0.997        |  |
| 320                           | 1229.1               | 1186                        | -            | 0.995        |  |
| 340                           | 1213.4               | 3287                        | -            | 0.993        |  |
| 360                           | 1198.0               | 5394                        | -            | 0.991        |  |
| 380                           | 1183.3               | 7461                        | -            | 0.988        |  |
| 400                           | 1168.2               | 9525                        | -            | 0.984        |  |

Table S2:  $x_{OMs} = 0.1$ 

| <i>T /</i> K | $\rho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|--------------|-----------------------|-----------------------------|--------------|--------------|
| 300          | 1232.5                | -21008                      | 0.283        | 0.718        |
| 320          | 1216.8                | -18844                      | 0.272        | 0.725        |
| 340          | 1201.2                | -16772                      | 0.274        | 0.721        |
| 360          | 1186.1                | -14677                      | 0.269        | 0.724        |
| 380          | 1171.6                | -12603                      | 0.261        | 0.729        |
| 400          | 1156.9                | -10544                      | 0.255        | 0.732        |

Table S3:  $x_{\text{OMs}} = 0.2$ 

| Т / К | $ ho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|-------|----------------------|-----------------------------|--------------|--------------|
| 300   | 1220.1               | -40840                      | 0.538        | 0.460        |
| 320   | 1204.2               | -38845                      | 0.540        | 0.457        |
| 340   | 1189.4               | -36729                      | 0.525        | 0.471        |
| 360   | 1175.0               | -34631                      | 0.510        | 0.484        |
| 380   | 1160.3               | -32537                      | 0.497        | 0.496        |
| 400   | 1145.6               | -30450                      | 0.482        | 0.508        |

| 1able 54. <i>x</i> <sub>OMs</sub> = 0.5 |                       |                             |              |              |  |
|-----------------------------------------|-----------------------|-----------------------------|--------------|--------------|--|
| <i>T /</i> K                            | $\rho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |  |
| 300                                     | 1208.1                | -40840                      | 0.734        | 0.265        |  |
| 320                                     | 1192.5                | -38845                      | 0.730        | 0.268        |  |
| 340                                     | 1177.3                | -36729                      | 0.717        | 0.280        |  |
| 360                                     | 1163.1                | -34631                      | 0.707        | 0.289        |  |
| 380                                     | 1148.5                | -32537                      | 0.683        | 0.312        |  |
| 400                                     | 1134.1                | -30450                      | 0.661        | 0.331        |  |

Table S4:  $x_{OMs} = 0.3$ 

Table S5:  $x_{\text{OMs}} = 0.4$ 

| T/K | $ ho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ ${ m mol}^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|-----|----------------------|---------------------------------|--------------|--------------|
| 300 | 1194.3               | -79688                          | 0.863        | 0.136        |
| 320 | 1179.7               | -77765                          | 0.869        | 0.130        |
| 340 | 1165.1               | -75594                          | 0.839        | 0.158        |
| 360 | 1150.6               | -73518                          | 0.825        | 0.172        |
| 380 | 1136.9               | -71487                          | 0.806        | 0.188        |
| 400 | 1122.9               | -69461                          | 0.789        | 0.204        |
|     |                      |                                 |              |              |

Table S6:  $x_{\rm OMs} = 0.5$ 

| <i>T /</i> K | $ ho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|--------------|----------------------|-----------------------------|--------------|--------------|
| 300          | 1181.6               | -98623                      | 0.927        | 0.072        |
| 320          | 1166.7               | -96721                      | 0.929        | 0.069        |
| 340          | 1153.2               | -94669                      | 0.918        | 0.080        |
| 360          | 1139.4               | -02582                      | 0.894        | 0.103        |
| 380          | 1124.9               | -90565                      | 0.884        | 0.112        |
| 400          | 1111.1               | -88554                      | 0.869        | 0.125        |

Table S7:  $x_{\rm OMs} = 0.6$ 

| <i>T /</i> K | $\rho$ / kg m^{-3} | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|--------------|--------------------|-----------------------------|--------------|--------------|
| 300          | 1167.9             | -117448                     | 0.966        | 0.032        |
| 320          | 1154.3             | -115502                     | 0.964        | 0.034        |
| 340          | 1139.7             | -113423                     | 0.950        | 0.047        |
| 360          | 1126.2             | -111437                     | 0.939        | 0.058        |
| 380          | 1112.8             | -109500                     | 0.933        | 0.063        |
| 400          | 1099.3             | -107510                     | 0.918        | 0.076        |

|       | $a/kam^{-3}$    | $\frac{E}{E} / k \text{Impl}^{-1}$ | 01    | 21           |
|-------|-----------------|------------------------------------|-------|--------------|
| I / K | <i>p</i> / kg m | $E_{\rm p}$ / KJ IIIOI             | 90Ms  | <i>y</i> OTf |
| 300   | 1154.2          | -136208                            | 0.984 | 0.015        |
| 320   | 1140.4          | -134120                            | 0.972 | 0.026        |
| 340   | 1126.2          | -132153                            | 0.970 | 0.028        |
| 360   | 1112.8          | -130204                            | 0.966 | 0.031        |
| 380   | 1099.8          | -128272                            | 0.956 | 0.039        |
| 400   | 1086.7          | -126348                            | 0.950 | 0.044        |

Table S8:  $x_{OMs} = 0.7$ 

Table S9:  $x_{\text{OMs}} = 0.8$ 

| <i>T /</i> K | $ ho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|--------------|----------------------|-----------------------------|--------------|--------------|
| 300          | 1139.0               | -154745                     | 0.990        | 0.009        |
| 320          | 1126.2               | -152787                     | 0.986        | 0.012        |
| 340          | 1112.5               | -160857                     | 0.983        | 0.014        |
| 360          | 1099.5               | -148934                     | 0.978        | 0.018        |
| 380          | 1086.6               | -147031                     | 0.975        | 0.020        |
| 400          | 1074.0               | -145144                     | 0.970        | 0.024        |

Table S10:  $x_{\rm OMs} = 0.9$ 

| <i>T /</i> K | $ ho$ / kg m $^{-3}$ | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|--------------|----------------------|-----------------------------|--------------|--------------|
| 300          | 1124.9               | -173373                     | 0.993        | 0.005        |
| 320          | 1111.6               | -171490                     | 0.994        | 0.004        |
| 340          | 1098.2               | -169514                     | 0.992        | 0.005        |
| 360          | 1085.3               | -167605                     | 0.988        | 0.008        |
| 380          | 1073.0               | -165740                     | 0.987        | 0.008        |
| 400          | 1060.4               | -163886                     | 0.984        | 0.010        |

Table S11:  $x_{\rm OMs} = 1.0$ 

| <i>T /</i> K | $\rho$ / kg m^{-3} | $E_{ m p}$ / kJ mol $^{-1}$ | $y_{ m OMs}$ | $y_{ m OTf}$ |
|--------------|--------------------|-----------------------------|--------------|--------------|
| 300          | 1109.5             | -191997                     | 0.998        | -            |
| 320          | 1096.0             | -190126                     | 0.998        | -            |
| 340          | 1083.4             | -188176                     | 0.997        | -            |
| 360          | 1070.7             | -186284                     | 0.996        | -            |
| 380          | 1058.7             | -184451                     | 0.995        | -            |
| 400          | 1046.5             | -182612                     | 0.993        | -            |

#### S1.2 Energies of Mixing Obtained from MD Simulation

1.0

0.0

0.0

From the MD simulations we can directly determine the energies of mixing according to

$$\Delta U_{\text{mix}} = U(x_{\text{OMs}}) - x_{\text{OMs}} \cdot U_{[\text{TEA}][\text{OMs}]}$$
(1)  
$$-(1 - x_{\text{OMs}}) \cdot U_{[\text{TEA}][\text{OTf}]}$$
$$= E_p(x_{\text{OMs}}) - x_{\text{OMs}} \cdot E_{\text{p},[\text{TEA}][\text{OMs}]}$$
$$-(1 - x_{\text{OMs}}) \cdot E_{p,[\text{TEA}][\text{OTf}]} ,$$

where  $U(x_{OMs})$  represents the total energy of the mixture [TEA][OTf]/[TEA][OMs] with a given composition  $x_{OMs}$ , while  $U_{[TEA][OTf]}$  and  $U_{[TEA][OMs]}$  are the energies of the pure PILs. The  $E_P$ -values represent the corresponding potential energies. All competed excess energies of mixing are summarised in Table S12.

 $\Delta U_{
m mix}$  / kJ mol $^{-1}$ 300 K 340 K 360 K 380 K  $400 \, \text{K}$ 320 K  $x_{\rm OMs}$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0  $-1.80 \pm 0.23$ 0.1  $-1.8 \pm 0.3$  $-1.83 \pm 0.18$  $-1.81 \pm 0.17$  $-1.75 \pm 0.17$  $-1.71 \pm 0.16$  $-3.54 \pm 0.24$ 0.2  $-3.3 \pm 0.3$  $-3.45 \pm 0.24$  $-3.38 \pm 0.24$  $-3.23 \pm 0.15$  $-3.09 \pm 0.16$ 0.3  $-4.6 \pm 0.4$  $-4.46 \pm 0.23$  $-4.37 \pm 0.25$  $-4.45 \pm 0.19$  $-4.14 \pm 0.20$  $-3.93 \pm 0.20$  $-4.37 \pm 0.19$ 0.4  $-4.57 \pm 0.23$  $-4.85 \pm 0.23$  $-4.59 \pm 0.24$  $-4.48 \pm 0.23$  $-4.26 \pm 0.19$ 0.5  $-4.23 \pm 0.28$  $-4.50 \pm 0.21$  $-4.45 \pm 0.16$  $-4.27 \pm 0.20$  $-4.14 \pm 0.16$  $-4.02 \pm 0.18$ 0.6  $-3.68 \pm 0.21$  $-3.80 \pm 0.24$  $-3.66 \pm 0.18$  $-3.65 \pm 0.18$  $-3.63 \pm 0.20$  $-3.50{\pm}0.14$ 0.7  $-2.79 \pm 0.18$  $-3.00 \pm 0.19$  $-2.78 \pm 0.22$  $-2.83 \pm 0.22$  $-2.85 \pm 0.18$  $-2.75 \pm 0.14$ 0.8  $-1.9 \pm 0.3$  $-1.92 \pm 0.16$  $-1.92{\pm}0.12$  $-1.86 \pm 0.24$  $-1.95 \pm 0.23$  $-1.97 {\pm} 0.18$ 0.9  $-0.92 \pm 0.22$  $-0.99 \pm 0.25$  $-0.97 \pm 0.22$  $-0.98 \pm 0.21$  $-0.96 {\pm} 0.15$  $-0.97 \pm 0.13$ 

0.0

0.0

0.0

0.0

Table S12: Excess energies of mixing calculated from molecular dynamics simulation data given in Tables S1 to S11.

## S2 <sup>1</sup>H-NMR-Spectra



Figure S1: Experimental <sup>1</sup>H-NMR spectra obtained at 298 K for [TEA][OMS]/[TEA][OTf] mixtures with mol fractions  $x_{\text{OMs}} = 1.0$ ,  $x_{\text{OMs}} = 0.25$ ,  $x_{\text{OMs}} = 0.5$ ,  $x_{\text{OMs}} = 0.75$ , and  $x_{\text{OMs}} = 0.0$  (from top to bottom). The arrow indicates the shift of the N-H proton peak as a function of mixture composition.

#### S3 Experimental Determination of the Excess Enthalpies

#### S3.1 Apparatus

The partial molar excess enthalpies  $\overline{H}_{ILj}^{E}$  in IL(1) + [TEA][OTf](2) mixtures were measured at T = 298.15 K using the TAM isothermal titration calorimeter (Thermometric, Sweden). The  $\overline{H}_{ILj}^{E}$  in [TEA][OMs](1) + [TEA][OTf](2) system were measured in 4 mL stainless steel reaction cell. Four experiments were conducted: the cell filled with pure [TEA][OMs](1) was titrated with pure [TEA][OTf](2) and vice versa; the cell filled with mixture of [TEA][OMs](1) + [TEA][OTf](2) ( $x_{OMs} = 0.4602$ ) was titrated with [TEA][OMs](1) or [TEA][OTf](2). 20 injections of 10  $\mu$ L of pure IL were injected into cell from 250  $\mu$ L syringe using the Lund pump. The content of the cell was stirred at 85 and 100 rpm using the gold propeller stirrer. The reference cell contained 0.9456 g of [TEA][OMs](1). All four experiments were conducted at 3000  $\mu$ W range of the calorimeter. The reaction cell and propeller were washed with acetone and dried in oven after experiment termination. Dynamic calibration was performed before start of own titration procedure.

Table S13: Experimental settings of TAM-ITC for measurement of  $\overline{H}^E$  in mixture of [TEA][OMs](1) + [TEA][OTf](2) at T = 298.15 K.

| $m_0^{cell}$ /g       | 0.9446 | 1.4399 | 1.2815 | 1.2522 |
|-----------------------|--------|--------|--------|--------|
| $x_{0,IL1}^{cell}$    | 1      | 0      | 0.4602 | 0.4602 |
| IL syringe            | 2      | 1      | 1      | 2      |
| Main section /min     | 90     | 90     | 60     | 60     |
| Baseline section /min | 15     | 15     | 15     | 15     |

#### S3.2 Data analysis

The partial molar excess enthalpy of injected IL at *i*-th injection is directly related to the measured heat

$$\overline{H}_{ILj,i}^E = \frac{\Delta q_i}{\Delta n_{j,i}},\tag{2}$$

where  $\Delta q_i$  is the measured peak area after injection of  $\Delta n_i$  molar amount of the *j*-th IL into cell. The measured  $\overline{H}_{IL,i}^E$  at *i*-th injection is tangent to  $H^E$  at  $(x_{IL,i} + x_{IL,i-1})/2$  between two injections. Here  $x_{IL,i}$  and  $x_{IL,i-1}$  denote the composition of the mixture in cell after *i*-th and (i-1)th injection.

The molar amount of injected component was calculated from pure IL densities [2] and injected volume. The numerical values of  $\overline{H}_{ILj,i}^{E}$  measured by TAM-ITC and used further for fitting are listed in Tables S14 and S15.

#### S3.3 Fitting by Redlich-Kister Equation

The composition dependence of  $H^E$  by Redlich-Kister equation is given as

$$H^{E} = x_{1}x_{2}[A_{1} + A_{2}(x_{1} - x_{2}) + A_{3}(x_{1} - x_{2})^{2}].$$
(3)

| $x_{\rm OMs}$ | $\overline{H}_{IL1}^E / (J \cdot \text{mol}^{-1})$ | $x_{\rm OMs}$ | $\overline{H}_{IL1}^E / (\mathbf{J} \cdot \mathbf{mol}^{-1})$ |
|---------------|----------------------------------------------------|---------------|---------------------------------------------------------------|
| 0.0049        | -7935                                              | 0.4682        | -2675                                                         |
| 0.0146        | -7764                                              | 0.4734        | -2632                                                         |
| 0.0241        | -7679                                              | 0.4785        | -2580                                                         |
| 0.0334        | -7582                                              | 0.4835        | -2538                                                         |
| 0.0426        | -7572                                              | 0.4884        | -2494                                                         |
| 0.0516        | -7399                                              | 0.4932        | -2469                                                         |
| 0.0604        | -7305                                              | 0.4979        | -2394                                                         |
| 0.0690        | -7174                                              | 0.5025        | -2360                                                         |
| 0.0775        | -7134                                              | 0.5071        | -2307                                                         |
| 0.0859        | -7071                                              | 0.5115        | -2264                                                         |
| 0.0941        | -6949                                              | 0.5159        | -2205                                                         |
| 0.1021        | -6827                                              | 0.5202        | -2187                                                         |
| 0.1100        | -6783                                              | 0.5245        | -2138                                                         |
| 0.1178        | -6639                                              | 0.5286        | -2111                                                         |
| 0.1254        | -6588                                              | 0.5327        | -2076                                                         |
| 0.1329        | -6492                                              | 0.5367        | -2015                                                         |
| 0.1403        | -6384                                              | 0.5407        | -1987                                                         |
| 0.1475        | -6330                                              | 0.5446        | -1930                                                         |
| 0.1546        | -6261                                              | 0.5484        | -1938                                                         |
| 0.1617        | -6210                                              | 0.5521        | -1884                                                         |
| 0.1685        | -6116                                              |               |                                                               |

Table S14: Measured  $\overline{H}^E$  of [TEA][OMs](1) ionic liquid in mixture of [TEA][OMs](1) + [TEA][OTf](2) at T = 298.15 K as function of mixture composition.

| $x_{\rm OMs}$ | $\overline{H}_{IL2}^E / (\mathbf{J} \cdot \mathbf{mol}^{-1})$ | $x_{\rm OMs}$ | $\overline{H}_{IL2}^E / (\mathbf{J} \cdot \mathbf{mol}^{-1})$ |
|---------------|---------------------------------------------------------------|---------------|---------------------------------------------------------------|
| 0.9845        | -8381                                                         | 0.4581        | -1795                                                         |
| 0.9745        | -8119                                                         | 0.4540        | -1753                                                         |
| 0.9646        | -8038                                                         | 0.4500        | -1718                                                         |
| 0.9549        | -7891                                                         | 0.4460        | -1692                                                         |
| 0.9455        | -7840                                                         | 0.4421        | -1661                                                         |
| 0.9362        | -7690                                                         | 0.4383        | -1632                                                         |
| 0.9271        | -7533                                                         | 0.4345        | -1594                                                         |
| 0.9181        | -7448                                                         | 0.4308        | -1563                                                         |
| 0.9094        | -7346                                                         | 0.4272        | -1532                                                         |
| 0.9008        | -7223                                                         | 0.4236        | -1511                                                         |
| 0.8923        | -7110                                                         | 0.4201        | -1484                                                         |
| 0.8841        | -7003                                                         | 0.4167        | -1452                                                         |
| 0.8759        | -6868                                                         | 0.4133        | -1424                                                         |
| 0.8679        | -6774                                                         | 0.4099        | -1390                                                         |
| 0.8601        | -6716                                                         | 0.4066        | -1377                                                         |
| 0.8524        | -6556                                                         | 0.4034        | -1354                                                         |
| 0.8449        | -6442                                                         | 0.4002        | -1314                                                         |
| 0.8374        | -6350                                                         | 0.3971        | -1301                                                         |
| 0.8301        | -6283                                                         | 0.394         | -1277                                                         |
| 0.8230        | -6206                                                         | 0.3909        | -1255                                                         |
| 0.8159        | -6070                                                         |               |                                                               |

Table S15: Measured  $\overline{H}^E$  of [TEA][OTf](2) ionic liquid in mixture of [TEA][OMs](1) + [TEA][OTf](2) at T = 298.15 K as function of mixture composition.

The partial molar enthalpies  $\overline{H}^E$  in binary system are calculated from  $H^E$  by

$$\overline{H}_{1}^{E} = H^{E} - (1 - x_{1})\frac{\partial H^{E}}{\partial x_{1}}$$

$$\tag{4}$$

$$\overline{H}_{2}^{E} = H^{E} - x_{1} \frac{\partial H^{E}}{\partial x_{1}}$$
(5)

Applying Eqs. 4 and 5 on Eq. 3 for the measured partial molar excess enthalpies  $\overline{H}_{IL1,i}^{E}$  and  $\overline{H}_{IL2,i}^{E}$  follows

$$\overline{H}_{IL1}^E = x_2^2 [A_1 + A_2(4x_1 - 1) + A_3(x_1 - x_2)(6x_1 - 1)],$$
(6)

$$\overline{H}_{IL2}^{E} = x_1^2 [A_1 + A_2(1 - 4x_2) + A_3(x_1 - x_2)(1 - 6x_2)].$$
(7)

The partial molar excess enthalpies at infinite dilution then follows

$$\overline{H}_1^{E,\infty} = A_1 - A_2 + A_3 \tag{8}$$

and

$$\overline{H}_2^{E,\infty} = A_1 + A_2 + A_3 \tag{9}$$

To evaluate the parameters  $A_n$  of Redlich-Kister equation given above, the experiments were treated by simultaneous linear non-weighted fit using 76 discrete  $\overline{H}_{IL,i}^E$  points. Table S16 lists the values for one to three parameter fit of experimental  $\overline{H}_{IL1}^E$  and  $\overline{H}_{IL2}^E$  by Eqs (6) and (7), respectively, together with the calculated values of partial molar excess enthalpies at infinite dilution  $\overline{H}_{IL1}^{E,\infty}$  and  $\overline{H}_{IL2}^{E,\infty}$ . The  $\overline{H}^E$  composition dependence of the excess enthalpies is best represented by three parameter Redlich-Kister equation. Figure S2 illustrates the dependence of the  $H^E$ ,  $\overline{H}_{IL1}^E$  and  $\overline{H}_{IL2}^E$  as function of mixture composition. The minimum in  $H^E$  is at  $x_1 = 0.5083$  with the value  $H^E = -2.24 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ .

Table S16: Values of adjustable parameters  $A_n$  of Redlich-Kister equations (6) and (7), standard deviation of fit s and calculated partial molar excess enthalpies at infinite dilution  $\overline{H}_1^{E,\infty}$  and  $\overline{H}_2^{E,\infty}$  by Eqs. (8) and (9) for [TEA][OMs](1) + [TEA][OTf](2) mixture at T = 298.15 K.

| $A_1$    | $A_2$   | $A_3$   | $s/(\mathbf{J}\cdot\mathbf{mol}^{-1})$ | $\overline{H}_1^{E,\infty}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$ | $\overline{H}_2^{E,\infty}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$ |
|----------|---------|---------|----------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| -8662.17 |         |         | 210                                    | -8.66                                                           | -8.66                                                           |
| -8673.45 | -385.90 |         | 136                                    | -8.29                                                           | -9.06                                                           |
| -8974.27 | -324.99 | 804.735 | 40                                     | -7.85                                                           | -8.50                                                           |



Figure S2: Excess molar enthalpies  $\overline{H}^E$  and  $H^E$  in the [TEA][OMs](1) + [TEA][OTf](2) mixture at T = 298.15 K. Points are experimental  $\overline{H}^E$ : (square)  $\overline{H}^E_1$  of [TEA][OMs](1); (circle)  $\overline{H}^E_2$  of [TEA][OTf](2). Dashed lines are fits to experimental  $\overline{H}^E_1$  and  $\overline{H}^E_2$  data by Redlich-Kister Eqs. (6) and (7), with parameters  $A_n$  listed in Table S16. Solid line is the calculated  $H^E$  by Eq. (3).

#### S3.4 Fitting by Lattice Model

From the lattice model for  $\Delta U_{\rm mix}$  at constant pressure for  $H^E$  follows

$$\Delta U_{\rm mix} = H^E = \Delta \epsilon_{\rm HB} x_1 \frac{(1-x_1)(1-f)}{x_1 + f(1-x_1)}$$
(10)

where  $x_1$  is the mole fraction of [TEA][OMs](1) and  $f = a + bx_1$ 

$$\overline{H}_{1}^{E} = \Delta \epsilon_{\text{HB}} (1 - x_{1}) \frac{a(ax_{1}^{3} - 3ax_{1}^{2} + 3ax_{1} - a - x_{1} + 1)}{(ax_{1}^{2} - 2ax_{1} + a + x_{1})^{2}}$$
(11)

$$\overline{H}_{2}^{E} = \Delta \epsilon_{\text{HB}} x_{1}^{2} \frac{2ax_{1} - 2a + 1}{(ax_{1}^{2} - 2ax_{1} + a + x_{1})^{2}}$$
(12)

For the partial molar excess enthalpies at infinite dilution then follows

$$\overline{H}_{1}^{E,\infty} = \Delta \epsilon_{\rm HB} (1-a)/a \tag{13}$$

and

$$\overline{H}_2^{E,\infty} = \Delta \epsilon_{\rm HB} (1 - a - b) \tag{14}$$

The following parameters of Eqs. (10) were fitted  $\Delta \epsilon_{\rm HB} = -14.9 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ , a = 0.6559, b = -0.2416 to experimental  $\overline{H}_1^E$  and  $\overline{H}_2^E$  data. Figure S3 illustrates the composition dependence of experimental and calculated  $\overline{H}^E$  and  $H^E$ . The calculated  $\overline{H}_1^{E,\infty}$  and  $\overline{H}_2^{E,\infty}$  by Eqs. (13) and (14) are  $\overline{H}_1^{E,\infty} = -7.83 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$  and  $\overline{H}_2^{E,\infty} = -8.74 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ , respectively. The minimum in  $H^E$  is at  $x_1 = 0.5082$  with the value  $H^E = -2.26 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ .



Figure S3: Excess molar enthalpies  $\overline{H}^E$  and  $H^E$  in the [TEA][OMs](1) + [TEA][OTf](2) mixture at T = 298.15 K. Points are experimental  $\overline{H}^E$ : (square)  $\overline{H}^E_1$  of [TEA][OMs](1); (circle)  $\overline{H}^E_2$  of [TEA][OTf](2). Dashed lines are fits to experimental  $\overline{H}^E_1$  and  $\overline{H}^E_2$  data by Lattice model, with parameters  $\Delta \epsilon_{\text{HB}} = -14.9 \text{ kJ} \cdot \text{mol}^{-1}$ , a = 0.6558, b = -0.2416. Solid line is the calculated  $H^E$  by Eq. (10).

#### References

- [1] K. Fumino, V. Fossog, K. Wittler, R. Hempelmann, R. Ludwig, *Angew. Chem. Int. Ed.* **2013**, *52*, 2368–2372.
- [2] K. Fumino, A.-M. Bonsa, B. Golub, D. Paschek, R. Ludwig, ChemPhysChem 2015, 16, 299–304.