Magnetic nature and hyperfine interactions of transition metal atoms adsorbed on ultrathin insulating films: a challenge for DFT.

Sergio Tosoni and Gianfranco Pacchioni

SUPPORTING INFORMATION

Table S1. Lattice parameters of MgO and Ag, strain released on the MgO film, Ag(100) work function, change in the work function in $(MgO)_{ML}/Ag$ and $(MgO)_{BL}/Ag$, with respect to Ag(100), interlayer distance in $(MgO)_{ML}/Ag$ and $(MgO)_{BL}/Ag$.

	a (MgO)	a (Ag)	Strain	φ (Ag)	$\Delta\phi$ (ML)	$\Delta\phi$ (BL)	R _I (ML)	R _I (BL)
	(Å)	(Å)	%	(eV)	(eV)	(eV)	(Å)	(Å)
PBE+D2'1	4.253	4.162	-2.2	4.24	-0.95	-1.33	2.51	2.57
PBE+D3	4.204	4.065	-3.3	4.16	-0.98	-1.38	2.55	2.57
HSE06+D3 ^a				3.83	-1.15	-1.27		
HSE06+D3 ^b	4.154	4.053	-2.2	3.89				
Exp	4.211	4.079	-3.1	4.22	-0.5/			
					-1.2 ^c			

^a Single point with HSE06 at the PBE+D3 geometry ^b Full relaxation with HSE06+D3

^c Values in the range -0.5 eV/-1.2 eV are reported depending on the adopted technique (contact potential measurement vs. field emission resonance)²

References

- 1 J. Pal, M. Smerieri, E. Celasco, L. Savio, L. Vattuone, R. Ferrando, S. Tosoni, L. Giordano, G. Pacchioni and M. Rocca, How Growing Conditions and Interfacial Oxygen Affect the Final Morphology of MgO/Ag(100) Films, *J. Phys. Chem. C*, 2014, **118**, 26091–26102.
- 2 T. König, G. H. Simon, H. P. Rust and M. Heyde, Work function measurements of thin oxide films on metals MgO on Ag(001), *J. Phys. Chem. C*, 2009, **113**, 11301–11305.