Electronic supplementary information (ESI) for:

Effect of Au/HfS₃ interfacial interactions on properties of HfS₃-based devices

Archit Dhingra,*^a Alexey Lipatov,^{b,c} Michael J. Loes,^b Jehad Abourahma,^b Maren Pink,^d Alexander Sinitskii,^b and Peter A. Dowben^a

^a Department of Physics and Astronomy, University of Nebraska–Lincoln, 855 North 16th Street, Lincoln, NE 68588-0299, U. S. A.

^b Department of Chemistry, University of Nebraska–Lincoln, 639 North 12th Street, Lincoln, NE 68588-0304, U. S. A.

^c Department of Chemistry, Biology & Health Sciences and Karen M. Swindler Department of Chemical and Biological Engineering, 501 E. Saint Joseph St., South Dakota School of Mines and Technology, Rapid City, SD 57701, U.S.A.

^d Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405-7102, U.S.A.

Figure S1. Band diagrams under different scenarios. (a) n-type HfS_3 in vacuo (left) versus ptype HfS_3 in air (right). O₂ chemisorption pushes the n-type Fermi level (E_F) downwards (closer to its valence band) to make it p-type. The physics of band bending for (b) n-type Schottky barrier at the Au/HfS₃ interface, and the physics of band bending for (c) p-type Schottky barrier at the Au/HfS₃ interface. Due to chemisorption of O₂, the E_F of HfS₃ is pushed downwards leading to an increase in its work function. Consequently, a p-type Schottky barrier is formed at the Au/HfS₃ interface, implied by downward band bending. This downward band bending manifests itself as an equivalent increase in the binding energies of the sulfur and hafnium XPS core-levels (shown in Fig. 3b and 3c of the main text).