Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting information

Singlet oxygen quenching as a probe of cytochrome *c* molten globule state formation

Andrej Hovan, Dagmar Sedláková, Martin Berta, Gregor Bánó and Erik Sedlák

Figure S1. The pH dependence of FMN triplet state lifetime indicates slight changes, decreasing from $\tau_{FMN} = 2.8 \ \mu s$ at pH 7 to $\tau_{FMN} = 2.5 \ \mu s$ at pH 2.

Table S1. The values of τ_{FMN} and τ_{Δ} obtained in the presence and in the absence of cytochrome c in the presence of 300 mM salts at pH 2.

No salt			300 mM Na ₂ SO ₄			300 mM NaCl			300 mM NaClO ₄		
cyt <i>c</i> (μM)	τ _{FMN} (μs)	τ _∆ (μs)	cyt <i>c</i> (μM)	τ _{FMN} (μs)	τ _Δ (μs)	cyt <i>c</i> (μM)	τ _{FMN} (μs)	τ _∆ (μs)	cyt <i>c</i> (μM)	τ _{FMN} (μs)	τ _Δ (μs)
0	2.5	3.4	0	3	3.3	0	2.5	3.5	0	2.8	3.4
100	1.4	1.6	100	2.4	2.9	100	1.8	2.6	25	2.4	3.2

Figure S2. The moving average of 20 points of typical FMN triplet state absorbance in the presence of 20 μ M cytochrome c and 10 mM salt (open **black** squares) and 100 mM salt (open **green** triangles). The light gray (10 mM salt) and gray (100 mM) curves show single exponential fit to the measured data.

Figure S3. The typical singlet oxygen phosphorescence kinetics in the presence of 20 μ M cytochrome *c* and 10 mM salt (open **black** squares) and 100 mM salt (open **green** triangles). The light gray (10 mM salt) and gray (100 mM) curves show conventional double exponential (**Equation 2** of main article) fit of the measured data.

Figure S4. The inverse of singlet oxygen lifetime τ_{Δ} plotted against cytochrome *c* concentration with different salt concentrations – 10 mM (**black** squares), 50 mM (**red** circles) and 100 mM (**green** triangles).

Figure S5. The salt concentration dependences of the first order rate constants for singlet oxygen and FMN triplet state quenching in the absence of cytochrome c in 5 mM glycine buffer, pH 2, in the presence of Na₂SO₄ (green triangles), NaCl (black squares), and NaClO₄ (red circles). The typical error of the presented points is around 0.003×10^6 s⁻¹ for both k₀^{Δ} and k₀^{FMN}.