Supporting information for

Insights into the Mechanism of Carbon Chain Growth on Zeolite-based Fischer-Tropsch Bifunctional Co/Y Catalyst

Xiuqin Dong^{1, 2, 3}, Jiaqi Li^{1, 2, 3}, Tianfeng Ma^{1, 2, 3}, Lingtao Wang^{1, 2, 3, *}

1. Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for

PetrochemicalTechnology, Tianjin University, Tianjin 300072, China; 2. Zhejiang Institute of

Tianjin University, Ningbo, Zhejiang, 315201, China; 3. State Key Laboratory of Engines,

Tianjin University, Tianjin 300072, China

Yellow: Si atom; red: O atom; white: H atom

Figure S1. Structure diagram of Y-zeolite 18T clusters model (a) Super cage left view; (b) Super cage top view; (c) 18T clusters top view

Figure S2. Key parameter related atomic label of Co/Y

Type of the bond	Bond length (Å)	
	Before	After
D(Si-O1)	1.66	1.78
D(Si-O2)	1.68	1.85
D(Si-O3)	1.69	1.75
D(Co1-Co2)	2.26	2.31
D(Co1-Co3)	2.51	2.50
D(Co2-Co3)	2.28	2.27
D(Co2-Si)	-	2.42
D(Co2-O2)	-	2.00

Table S1. Bond length of Y-zeolite and clusters before and after Y loaded (based on Figure S2)

Table S2. Some key angle parameters before and after Y loaded (based on Figure S2)

True - Cale - Lou d	Bond Angle ($^{\circ}$)	
Type of the bond	Before	After
A(O1-Si-O2)	109.7	113.6
A(O1-Si-O3)	111.9	121.3
A(O2-Si-O3)	111.6	122.2
A(Si-O1-Si)	151.8	150.6
A(Si-O2-Si)	140.2	143.4
A(Si-O3-Si)	152.6	157.9
A(Co1-Co2-Co3)	67.2	66.3
A(Co1-Co3-Co2)	56.1	57.7
A(Co2-Co1-Co3)	56.7	56.0

Figure S3. Co atom labeling of Mulliken charge distribution

Number	Mulliken charge(e)	
Indiliber	Co ₁₃	Co/Y
1	-0.247	-0.382
2	0.100	0.448
3	-0.053	0.176
4	0.110	0.458
5	-0.055	0.094
6	-0.014	-0.107
7	-0.358	-0.372
8	-0.011	-0.116
9	-0.358	-0.348
10	-0.010	-0.086
11	-0.247	-0.389
12	1.153	0.862
13	-0.010	-0.074
Total	0	0.164

Table S3. Mulliken charge population of Co atom in Co_{13} and Co/xY (based on Figure S3)

Table S4. Charge changes of Co atoms connected with the species during the reaction

	The numbers of Co	Sum of Co-	Sum of Co-	Charge
Species	connected with the	charges in	charges in	changes
	species	Co ₁₃ (e)	Co/Y (e)	(e)
CO	Co8+Co9+Co10	-0.379	-0.55	-0.171
HCO	Co9+Co10	-0.368	-0.434	-0.066
СОН	Co8+Co9+Co10	-0.379	-0.55	-0.171
H ₂ CO	Co1+Co8	-0.258	-0.498	-0.24
СН	Co8+Co9+Co10	-0.379	-0.55	-0.171
CH_2	Co8+Co9+Co10	-0.379	-0.55	-0.171
CH ₃	Co8+Co9+Co10	-0.379	-0.55	-0.171
CH ₄	-	-	-	-
CHCH	Co1+Co8	-0.258	-0.498	-0.24
CHCH ₂	Co1+Co8	-0.258	-0.498	-0.24
CHCH ₃	Co8+Co9	-0.369	-0.464	-0.095
CH ₂ CH ₂	Co1+Co8	-0.258	-0.498	-0.24
CH ₂ CH ₃	Co8+Co9	-0.369	-0.464	-0.095
CH ₃ CH ₃	-	-	-	-
CHCHCH	Co8+Co9+Co10	-0.379	-0.55	-0.171
CH ₂ CH ₂ CH ₂	Co8+Co9+Co10	-0.379	-0.55	-0.171
CHCHCHCH	Co1+Co8+Co9+Co10	-0.626	-0.932	-0.306
CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	Co1+Co8+Co9	-0.616	-0.846	-0.23
CHCH ₂ CH ₃	Co8+Co9	-0.369	-0.464	-0.095
CH ₂ CH ₂ CH ₃	Co8+Co9	-0.369	-0.464	-0.095
CHCH ₂ CH ₂ CH ₃	Co8+Co9	-0.369	-0.464	-0.095
CH ₂ CH ₂ CH ₂ CH ₃	Co8+Co9	-0.369	-0.464	-0.095

(d) $C_2 \sim C_4$ growth

Gray: C atom; white: H atom; blue: Co atom

Figure S4. Single adsorption stable adsorption configuration of related species on Co/Y

Table S5. Stable adsorption configuration and	l Co-C bond length of related species on Co/Y
---	---

Reaction	Species	Stable adsorption configuration	Bond length (Å)
H-assisted in CO	СО	hollow	2.033 1.943 1.879
	HCO	bridge	2.257 1.787
dissociation	COH	hollow	1.861、1.909、1.826
	H_2CO	bridge	2.100、2.070
	СН	hollow	1.894、1.855、1.835
C. hydrogenetion	CH_2	hollow	1.959、1.999、1.934
Ci ilyulogenation	CH ₃	hollow	2.178、2.191、2.043
	CH ₄	-	-
cu cu - l'	CHCH	bridge (Horizontal)	2.058, 1.955, 1.847
	CHCH ₂	bridge (Horizontal)	1.928、2.022、2.090
	CHCH ₃	bridge (Vertical)	1.887、1.925
CH_x - CH_x coupling	CH_2CH_2	bridge (Horizontal)	1.977、2.083、2.088
	CH ₂ CH ₃	bridge (Vertical)	1.989、2.189
	CH ₃ CH ₃	-	-
	CHCHCH	bridge (Horizontal)	1.898、1.970、2.156、 2.048、1.905
C ₂ ~C ₄ growth	CH ₂ CH ₂ CH ₂	bridge (Horizontal)	2.035、2.097、2.263、 2.168、2.039
	CHCHCHCH	bridge (Horizontal)	1.953、1.996、2.057、 1.968、1.925
	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	bridge (Horizontal)	2.103、2.058、1.998、 2.250
Steric hindrance	CHCH ₂ CH ₃	bridge (Vertical)	2.144、2.173
	CH ₂ CH ₂ CH ₃	bridge (Vertical)	1.990、2.197
	CHCH ₂ CH ₂ CH ₃	bridge (Vertical)	1.932、1.884
	$CH_2CH_2CH_2CH_3$	bridge (Vertical)	2.005 2.152

(a) CH

(d) CHCHCHCH

Figure S5. Mulliken population maps of key species on vacuum, Co13 and Co / Y (from left to right)

CH₂+H

TS-8

 CH_3

Figure S6. Stable configuration of the initial state, transition state and end state of the reaction on Co/Y