Supporting Information for: Designing 3d Metal Oxides: Selecting Optimal Density Functionals for Strongly Correlated Materials

Md. Anower Hossain,* Patrick Burr, [†] Judy N. Hart, [‡] Ina Østrøm,*

Bram Hoex.*§

April 22, 2022

Contents

T	Mathematical Description of Exchange-Correlation Functionals	S2
	1.1 Local Density Approximation (LDA)	S3
	1.2 Generalized Gradient Approximation (GGA)	S3
	1.3 Global Hybrid Functionals	S4
	1.4 Range-Separated Hybrid Functionals	S5
2	Timeline of the Band Gap Problem	$\mathbf{S5}$
3	Structural Parameters	$\mathbf{S7}$
4	Lattice Dynamics	$\mathbf{S13}$
5	Electronic Properties	$\mathbf{S15}$
	5.1 Band Structure and Density of States	S15
	5.1.1 Magnetic Moment and Charges	S31
	5.1.2 Spin Contamination	S34
	5.2 Optical Properties	S35
6	Average Performances	$\mathbf{S35}$
7	Input Details	S 38
	7.1 Geometry Input Files	S38
	7.2 Basis Sets	S48

School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington NSW 2052, Australia.

[‡]School of Materials Science & Engineering, UNSW Sydney, NSW 2052, Australia.

1 Mathematical Description of Exchange-Correlation Functionals

The Kohn and Sham¹ formalism basis considers an fictitious system of non-interacting electrons which are subject to an external field (v_0) , such that the resulting density remains identical to the exact ground-state density distribution. This allows to write a general expression for the electronic ground-state energy as a single Slater determinant (or Kohn-Sham determinant) wave function that gives the exact ground state electron density (ρ_0) . The total energy functional, is given as:

$$E[\rho(r)] = K[\rho(r)] + \int v(r)\rho(r)dr + J[\rho(r)] + E_{\rm XC}[\rho(r)]$$
(1)

In Equation 1, $K[\rho(r)]$ stands for kinetic energy of the non-interacting electrons, the integral for the attractive potential energy of the electron-nuclei interaction, $J[\rho(r)]$ is the Coloumbic electron-electron repulsive self interaction, and $E_{XC}[\rho(r)]$ is the exchange-correlation (XC) functional. The last energy term in Equation 1 is unknown, and so is the exchange-correlation potential:

$$v_{\rm XC}(r) \equiv \frac{\delta E_{\rm XC}}{\delta \rho(r)} \tag{2}$$

The J[$\rho(\mathbf{r})$] term originates the self-interaction error (SIE) by considering the electron to interact with itself, and it also does not account for the correlated motion of the electrons. The electronic correlation is a dynamical effect that comes from classical Coulombic repulsion, and from the exchange repulsion of electron with the same spin (Pauli exclusion principal), which is higher in magnitude in general, and is critical to describe spin-polarized systems.² In a correlated system, as a consequence of the repulsive effects and their differences in magnitude, the electron density is not uniform, and this why the exchange-correlation term is so important. Moreover, the $E_{\rm XC}[\rho(r)]$ in Equation 2 must include a kinetic energy correction for the interacting electrons.

The form of the Kohn-Sham equation that is analogous to the Fock equation, and that can be solved self-consistently, can be written as:

$$\left(-\frac{1}{2}\Delta + \upsilon_0\right)\varphi_i = \varepsilon_i\varphi_i \tag{3}$$

For unrestricted Kohn-Sham calculations (UKS), spin polarization is introduced to differentiate the α and β electrons functions of the open-shell electronic structure. This generates two different versions of Equation 3 that are spin dependent, one for α and another for β electrons with $\rho_{\alpha}(r)$ and $\rho_{\beta}(r)$ density distributions, respectively.

The Hamiltonian operator v_0 (Equation 4) represents the main ansatz in DFT, which is to figure out the form of the exchange and correlation potential (Equation 2), and this is how the different rungs of density functionals of the Jacob's ladder were developed.³

$$v_0 = v + v_{\rm J} + v_{\rm XC} \tag{4}$$

where we can write $v_{\rm xc}$ as:

$$v_{\rm XC} = v_{\rm X} + v_{\rm C} \tag{5}$$

Therefore, we can rewrite Equation 2 considering:

$$\upsilon_{\rm X}(r) \equiv \frac{\delta E_{\rm X}}{\delta \rho(r)} \tag{6}$$

and,

$$v_{\rm C}(r) \equiv \frac{\delta E_{\rm C}}{\delta \rho(r)} \tag{7}$$

Being that the contribution of the E_X is greater than E_C , however the form of the latter is where most density functionals differ from each other, hence from where different approximations originate.

1.1 Local Density Approximation (LDA)

The LDA approach to DFT is based on an electrically neutral homogeneous gas model, with the nuclear charge distributed uniformly and a localized electron density that satisfies the Pauli exclusion principle. The general form of LDA depends on the localized density $(\rho(r))$, and can be written as:

$$E_{\rm XC}^{LDA}[\rho(r)] = \int \rho(r)\varepsilon_{\rm XC}[\rho(r)]dr$$
(8)

where $\varepsilon_{\rm XC}$ is broken down into different expressions for exchange and correlation, as in Equations 6 and 7. The exchange part has analytical form from the homogeneous gas model (obtained by the Kohn-Sham determinants), and the main challenge arises in the different approximations for the correlation part. When spin configurations are considered in the form of $\rho_{\alpha}(r)$ and $\rho_{\beta}(r)$, the LDA becomes the local spin density approximation (LSDA).

$$E_{\rm XC}^{LSDA}[\rho(r)] = \int \rho(r) \varepsilon_{\rm XC}(\rho_{\alpha}, \rho_{\beta}) dr$$
(9)

The LDA is simple, and practical as it is computationally inexpensive. Its performance is acceptable for geometries and molecular vibrational frequencies. However, the limitations of the homogeneous gas model employed in the LDA leads to underestimation of the exchange, and overestimation of the correlation energies and this has serious implications to quantify binding energies, band structures, ionization potentials, and long-range interactions.^{4,5}

1.2 Generalized Gradient Approximation (GGA)

The semilocal GGA considers the density functional $E_{\rm XC}[\rho(r)]$ to be both, local and non-local with respect to the electron density in a certain position, hence correct part of the LDA locality issues. To introduce this effect into $E_{\rm XC}[\rho]$, the functional also depends on the gradient of $\rho(r)$:

$$E_{\rm XC}^{GGA}[\rho(r)] = E_{\rm XC}^{LSDA}[\rho(r)] + \int \rho(r)\varepsilon_{\rm XC}(\rho_{\alpha},\rho_{\beta},\nabla\rho_{\alpha},\nabla\rho_{\beta})dr$$
(10)

The most popular GGA functionals are the well known PBE and BLYP, albeit B3PW, BP86, and the revised version of PBE for solids (e.g. PBESOL) are also well established functionals. The meta-GGA (mGGA) functionals, such as M06-L descends naturally from the GGA family of functionals, including an extra second derivative term $\nabla^2 \rho(r)$ from the electrons kinetic energy $(\tau(r))$ into Equation 10.⁶ Hence, the general format of mGGA XC functional is:

$$E_{\rm XC}^{mGGA}[\rho(r)] = E_{\rm XC}^{LSDA}[\rho(r)] + \int \rho(r)\varepsilon_{\rm XC}(\rho_{\alpha},\rho_{\beta},\nabla\rho_{\alpha},\nabla\rho_{\beta},\tau_{\alpha},\tau_{\beta})dr$$
(11)

where $\tau(r)$ is the kinetic energy density for occupied KS orbitals, which are nonlocal functionals of the density $\rho(r)$:

$$\tau(r) = \frac{1}{2} \sum_{i}^{occ} |\nabla \varphi_i(r)|^2 \tag{12}$$

Although GGA and meta-GGA functionals improve some LDA limitations without adding extra computational demand, they still don't improve LDA total energies and still result in chemical bond energies overestimation, as well as have other restrictions that discussed in the main manuscript which are related to solids.

1.3 Global Hybrid Functionals

The rigorous mathematical formulation that justifies the format of hybrid density functionals is based on the adiabatic connection method, and its complete definition can found elsewhere.⁷ Herein, we define the global hybrid (GH) exchange–correlation functionals as nonlocal functionals of the occupied orbitals constructed as a linear combination of the Hartree–Fock (HF) exact exchange functional ($E_{\rm HF} = a$) that replaces a fraction of the GGA exchange.⁸

$$E_{\rm XC}^{GH}[\rho(r)] = (1-a)E_{\rm X}^{DFA}[\rho(r)] + aE_{\rm X}^{HF} + E_{\rm C}^{DFA}[\rho(r)]$$
(13)

While $E_{\rm X}^{HF}$ in Equation 13 is the exact exchange from HF theory, and is common to all hybrid functionals except in the amount (a) that is added, the exchange $(E_{\rm X}^{DFA})$ and correlation $(E_{\rm C}^{DFA})$ terms associated to DFA (density functional approximation), are exactly where the density functionals differ (and where the problems reside). For example, the "ingredients" for the famous B3LYP recipe are the Becke's three parameter (B3) hybrid functional determined with empirical atomization energies,⁹ and accounts for nonlocal weighting parameters b (weight of nonlocal part of the exchange) and c (weigh of nonlocal correlation):

$$E_{\rm XC}^{B3} = E_{\rm XC}^{LSDA} + a\left(E_{\rm X}^{HF} - E_{\rm X}^{LSDA}\right) + b\left(E_{\rm X}^{GGA} - E_{\rm X}^{LSDA}\right) + c\left(E_{\rm C}^{GGA} - E_{\rm C}^{LSDA}\right) \tag{14}$$

With the values for a, b and c in Equation 14 being 0.2, 0.72, and 0.81, respectively, and Becke's GGA exchange functional $E_{\rm X}^{B88}$. Next, we add the correlation LSDA functional $E_{\rm C}^{VWN}$,¹⁰ and the GGA correlation functional $E_{\rm C}^{LYP}$.¹¹ Originally, to derive $E_{\rm XC}^{B3}$ Becke employed the PW91 GGA correlation functional, developed by Perdew and Wang, which is known as B3PW.¹² Over the years, B3LYP became popular due to its great agreement with experimental data, regardless the lack of theoretical rigor in its formulation, which is not true for B3PW.

Another widely used hybrid functional is the PBE0, developed by Perdew, Burke and Ernzerhof.¹³ Differently of its GGA PBE version, the PBE0 adds a = 0.25 exact exchange E_X^{HF} to Equation 13, with both GGA (or DFA) exchange and correlation functionals as PBE. Although PBE0 was rationally developed by fitting high-level MP4 atomization energies to molecular experimental data,¹⁴ its lack of popularity in the solid state community is mainly due to the overestimation of band gap for some electronic systems.¹⁵

The revised version of the mGGA M06-L, known as M06, is a combination of Equation 11 and 15, in which the DFA functional is the mGGA, and the amount of the HF exchange a is 0.27.¹⁶

1.4 Range-Separated Hybrid Functionals

The family of the range-separated hybrid (RSH) functionals screen the interelectronic Coulomb potential in the HF exchange term with the Gauss (erf) and its complementary (erfc) error function in three different length scales: short $(E_{\rm X,SR}^{HF})$, middle $(E_{\rm X,MR}^{HF})$, and long range $(E_{\rm X,LR}^{HF})$.¹⁷ This makes $E_{\rm X}^{HF}$ dependent on the distance between electron in the length scales of separation $(\omega(a_0^{-1}))$. The scaling error function of $E_{\rm X}^{HF}$ has the format:

$$\frac{1}{r_{12}} = \left[\frac{erfc(\omega_{\rm SR}r_{12})}{r_{12}}\right]_{\rm SR} + \left[\frac{1 - erfc(\omega_{\rm SR}r_{12}) - erf(\omega_{\rm LR}r_{12})}{r_{12}}\right]_{\rm MR} + \left[\frac{erf(\omega_{\rm LR}r_{12})}{r_{12}}\right]_{\rm LR}$$
(15)

Hence, in short range hybrid functionals such as HSE06 and HSESOL, ω_{SR} and ω_{LR} are both 0.11, and in middle range like HISS, ω_{SR} and ω_{LR} are 0.84 and 0.20, respectively.

The next step after screening the Coulomb operator with Equation 15 is to add the amount of $E_{\rm X}^{HF}$ with respect to the length scale that the functional belongs to. To do this, the general formula for the RSH functionals has the format:

$$E_{\rm XC}^{RSH} = E_{\rm XC}^{DFA} + c_{\rm SR} \left(E_{\rm X,SR}^{HF} - E_{\rm X,SR}^{DFA} \right) + c_{\rm MR} \left(E_{\rm X,MR}^{HF} - E_{\rm X,MR}^{DFA} \right) + c_{\rm LR} \left(E_{\rm X,LR}^{HF} - E_{\rm X,LR}^{DFA} \right)$$
(16)

In Equation 16, the short RSH HSE06 and HSESOL receive both $c_{\rm SR}=0.25,$ and the middle range HISS $c_{\rm MR}=0.60.$

2 Timeline of the Band Gap Problem

YEAR TITLE

1983	Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities
1985	Density functional theory and the band gap problem
1986	Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
1996	Generalized Kohn-Sham schemes and the band-gap problem
2005	Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Emzerhof screened hybrid functional
2006	Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators
2007	Band gap calculations with Becke-Johnson exchange potential
2008	Localization and Delocalization Errors in Density Functional Theory and Implications for Band-Gap Prediction
	Accurate solid-state band gaps via screened hybrid electronic structure calculations
2009	Calculation of semiconductor band gaps with the M06-L density functional
	Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
2011	Accurate Band Gans for Semiconductors from Density Functional Theory
2011	Communication: A new hybrid exchange correlation functional for hand-ran calculations: using a short-range Gaussian attenuation
2012	Perivative discontinuity bandrate and lewest unoccurried malecular orbital in density functional theory
2012	Challenges for Density Functional Theory
	Chambargad to a basis of instructional approximation
	Ch ch Adam gu ile best der lagt un nicht ein opprovin mittent Imeren ein angelingen dirter fattige nementeren gent beget gene fram a middle rengen geronnend beheid avchange franctional
0010	in je uver seniron nuclu auter palanetes a in uan yajas nun a miniera je sutesten nu juhn exital ye un and inhalosoosidos Danis II. in entinosi Tacoa, and Davia (na far Danid Car Carsonia) a minierane far Tacatisa Matal Quidos and Dishalosoosidos
2013	Der sigt für danna men van die begrund und dan verapischen ingenerationen inder Media Aure and Nice Aure and Dichardugenines
0014	Accurate soreened exchange dand sindcures for the transition metal monocoles and units, neo 1, 400 and the
2014	Electronic barlos and excited states on in-v semiconductor polytypes with screened-excitange censity functional calculations
	Understanding density functional theory (DF1) and completing it in practice
	Density functional theory in the solid state
2015	Comparing LUA-1/2, HSEU3, HSEU6 and GUWU approaches for band gap calculations of alloys
	Exchange-correlation potentials with proper discontinuities tor physically meaningful Kohn-Sham eigenvalues and band structures
	Systematic approach for simultaneously correcting the band-gap and p-d separation errors of common cation III-V or II-VI binaries in DET calculations within a L DA.
2016	Willing a LL2. General anomach for band gan calculation of semiconductors and insulators.
2010	Resculting of the Band Gan Parolician Problem for Materials Design
	Reaction of the frame cargo relations of the transmission transmission and the second state of the second
	Table 1 of a for Tradeout and the state of the tradeout of the tradeout of the state of the stat
	Literating Lead Calify mini-Unit Certainal than the Department of the Control of
2017	Langeonitor - return contain the sensitive transfer that and the sensitive sensitive transfer and the sensitive and the sensitive
2017	en mujanka, yen makuda yagi to mesiku ne ban caga ni sonas ny osing bersiku na kan sonasing sadalarinis. Impantanoa of the Kindis Exerce i positiv for Band Cag Calustano is Salida with Casair, is unchant Theory.
	Importance of the Ninetic energy behavior band cap calculators in Solids with behavior an intervent and solid cap calculators in Solids with behavior and the Ninetic energy behavior for a solid band the Carcinator in the Solids with the S
	I LE TIVATI TURVOG UZA EKZIANJE VOTRALITI NUKORI IN COMPUNITI SETUN ULUKU BUN GAJS ALI MARKANI EKZIANTI ERUKSI Di stamoli oluku oli ka alikota del 100 f. antianali integal antigi ka alastania du oluku dura ad kana ano de u
	oysethaid, suby of the electric in this functional international parameters on the electronic structure and candidato dap of a representative set of metal oxides.
004.0	un desta uni gran organs or sonus in gar letatest norm-sinan menor
2018	Inverse Band Structure Lesign via Materiais Database Soreening: Application to Square Hanar I nermoelectrics
2019	Simple conceptor to candogap proceens in the analysis an improved, local inst-principles density functional meory
	Un the calculation of the bandgap of periodic solids with MUGA functionals using the total energy
	Laplacan rise and asymptotic corrected semilocal exchange potential applied to the band gap of solids
	Accurate Band Gap Hedictions of Semiconductors in the Hamework of the Similarity Hansformed Equation of Motion Coupled Cluster Lineory
	Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions
	Efficient band gap prediction of semiconductors and insulators from a semilocal exchange-correlation functional
	Assessing model-dielectric-dependent hybrid functionals on the antiterromagnetic transition-metal monoxides MnO, EO, CoO, and NO
	Eand Gap of 3D Metal Oxides and Quasi-2D Materials from Hybrid Density Functional Theory: Are Dielectric-Dependent Functionals Superior?
2020	Wannier-Koopmans method calculations for transition metal oxide band gaps
	A band-gap database for semiconducting inorganic materials calculated with hybrid functional
	Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning
	Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction
2021	Solving the strong-correlation problem in materials
	Efficient Band Structure Calculation of Two-Dimensional Materials from Semilocal Density Functionals
	Opening band gaps of low-dimensional materials at the meta-GGA level of density functional approximations
	Band gaps of crystalline solids from Wannier-localization-based optimal tuning of a screened range-separated hybrid functional
	Density functional approach to the band gaps of finite and periodic two-dimensional systems
	Graph network based deep learning of bandgaps
	Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning
	The utility of composition-based machine learning models for band gap prediction
	Exact exchange-correlation potentials for calculating the fundamental gap with a fixed number of electrons
2022	Accurate prediction of band gap of materials using stacking machine learning model
	Size effect of band gap in semiconductor nanocrystals and nanostructures from density functional theory within HSE06

Figure S1: Timeline of publications discussing the DFT band gap problem for periodic systems.

3 **Structural Parameters**

The refcodes and references for the crystallographic structures obtained from the Inorganic Crystal Structure Database (ICSD) are: CoO (245323),¹⁸ Cr₂O₃ (75577),¹⁹ CuO (69757),²⁰ Fe₂O₃ (173651),²¹ MnO (9864),²² NiO (9866),²² V₂O₃ (1869),²³ Cu₂O (52043),²⁴ TiO₂ (23697),²⁵ V₂O₅ (43132),²⁶ and ZnO (290322).²⁷ Crystal structures and details are shown in Figures S2, $S\overline{3}$ and S4.

Man

Fm-3

С

Ro

Ν

Figure S2: Crystallographic unit cell structures of TiO_2 , V_2O_3 , V_2O_5 and Cr_2O_3 . Color-code: light blue = titanium, pink = vanadium, dark blue = chromium, red = oxygen.

Figure S3: Crystallographic unit cell structures of MnO_1 Fe₂O₃, CoO and NiO. Color-code: green = manganese, dark orange = iron, gold = cobalt, light grey = nickel, red = oxygen.

Cŋ	stallographic Cell Struct	ure
	IUPAC Name	
Copper(II) oxide	Copper(I) oxide	Zinc(II) oxide
	Mineral Name	
Tenorite	Cuprite	Zincite
	Chemical Formula	
CuO	Cu ₂ O	ZnO
	Space Group	
C1/c1 (9)	Pn-3mZ (224)	P3 (143)
	Crystal System	
Monoclinic	Cubic	Trigonal
	Structure Type	
-	-	Wurtzite
	Cell Parameters (a b c $\alpha \beta \gamma$)	
4.6927 3.4283 5.1370 90.000 99.546 90.000	4.2685 4.2685 4.2685 90.000 90.000 90.000	3.2468 3.2468 5.2019 90.000 90.000 120.000

Figure S4: Crystallographic unit cell structures of CuO, Cu₂O, and ZnO. Color-code: *light pink* = copper, *dark grey* = zinc, *red* = oxygen. 1

Figure S5: Spin ordering for antiferromagnetic (AFII) open-shell insulators.

	E _{HF} (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	$ ho_{\text{bulk}}$	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBEO	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	6.43	6.69	6.21	7.06	6.47	6.40	6.50	6.23	6.42	6.66	6.43	6.66	6.51	6.44	6.49
CuO	6.34	5.75	5.52	6.04	6.34	6.11	6.37	5.73	6.35	6.67	6.34	6.66	5.89	6.46	6.57
Cu ₂ O	5.85	5.81	5.52	6.13	5.89	5.82	5.94	5.61	5.85	6.08	5.85	6.09	5.82	5.86	5.89
Cr ₂ O ₃	5.18	5.09	4.94	5.31	5.07	5.15	5.21	5.04	5.18	5.31	5.18	5.31	5.12	5.21	5.23
Fe ₂ O ₃	5.20	5.18	5.00	5.49	5.14	5.17	5.23	5.05	5.20	5.36	5.20	5.33	5.17	5.24	5.27
MnO	5.39	5.39	5.20	5.64	5.36	5.36	5.44	5.24	5.38	5.55	5.39	5.55	5.36	5.43	5.43
NiO	6.69	6.64	6.37	7.00	6.59	6.66	6.77	6.48	6.69	6.94	6.69	6.94	6.58	6.72	6.77
V_2O_5	3.34	2.85	2.68	3.04	3.14	2.95	2.91	3.01	3.11	3.25	3.13	3.24	3.23	3.14	4.12
V ₂ O ₅ *	3.34	3.13	3.21	3.29	3.18	3.73	3.75	3.60	3.58	3.66	3.62	3.67	3.34	3.62	N/A
V_2O_3	4.90	4.98	4.81	5.21	4.92	4.88	4.94	4.77	4.89	5.02	4.90	5.03	4.84	4.91	4.92
ZnO	5.51	5.36	5.19	5.60	5.45	5.48	5.56	5.36	5.52	5.68	5.51	5.68	5.55	5.56	5.61
TiO ₂	4.32	4.18	4.07	4.31	4.23	4.29	4.33	4.21	4.32	4.41	4.32	4.41	4.28	4.36	4.38

Figure S6: Bulk density ρ_{bulk} (g/cm³) values calculated with different density functionals. Experimental data (first column) references: CoO, 18 Cr₂O₃, 19 CuO, 20 Fe₂O₃, 21 MnO, 22 NiO, 22 V₂O₃, 23 Cu₂O, 24 TiO₂, 25 V₂O₅, 26 and ZnO. 27

	E _{HF} (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	a (Å)	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBEO	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	6.43	6.69	6.21	7.06	6.47	6.40	6.50	6.23	6.42	6.66	6.43	6.66	6.51	6.44	6.49
CuO	6.34	5.75	5.52	6.04	6.34	6.11	6.37	5.73	6.35	6.67	6.34	6.66	5.89	6.46	6.57
Cu ₂ O	5.85	5.81	5.52	6.13	5.89	5.82	5.94	5.61	5.85	6.08	5.85	6.09	5.82	5.86	5.89
Cr ₂ O ₃	5.18	5.09	4.94	5.31	5.07	5.15	5.21	5.04	5.18	5.31	5.18	5.31	5.12	5.21	5.23
Fe ₂ O ₃	5.20	5.18	5.00	5.49	5.14	5.17	5.23	5.05	5.20	5.36	5.20	5.33	5.17	5.24	5.27
MnO	5.39	5.39	5.20	5.64	5.36	5.36	5.44	5.24	5.38	5.55	5.39	5.55	5.36	5.43	5.43
NiO	6.69	6.64	6.37	7.00	6.59	6.66	6.77	6.48	6.69	6.94	6.69	6.94	6.58	6.72	6.77
V_2O_5	3.34	2.85	2.68	3.04	3.14	2.95	2.91	3.01	3.11	3.25	3.13	3.24	3.23	3.14	4.12
V ₂ O ₅ *	3.34	3.13	3.21	3.29	3.18	3.73	3.75	3.60	3.58	3.66	3.62	3.67	3.34	3.62	N/A
V_2O_3	4.90	4.98	4.81	5.21	4.92	4.88	4.94	4.77	4.89	5.02	4.90	5.03	4.84	4.91	4.92
ZnO	5.51	5.36	5.19	5.60	5.45	5.48	5.56	5.36	5.52	5.68	5.51	5.68	5.55	5.56	5.61
TiO ₂	4.32	4.18	4.07	4.31	4.23	4.29	4.33	4.21	4.32	4.41	4.32	4.41	4.28	4.36	4.38

Figure S7: Lattice parameter a (Å) values calculated with different density functionals. for V₂O₅, b is shown. Experimental data (first column) references: CoO,¹⁸ Cr₂O₃,¹⁹ CuO,²⁰ Fe₂O₃,²¹ MnO,²² NiO,²² V₂O₃,²³ Cu₂O,²⁴ TiO₂,²⁵ V₂O₅,²⁶ and ZnO.²⁷

		GGA		mGGA			Global	Hybrid			Hybrid mGGA	Rang	e-Separ Hybrid	rated		
тмо	BLYP	PBE	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBEO	PBESOLO	PBE0-13	M06	HSE06	HSESOL	HISS	a	
CoO	-1.23	0.88	2.48	0.11	-0.19	0.34	-1.12	-0.09	1.11	0.03	0.34	-0.07	1.12	0.25	4.26	
CuO	9.31	10.49	12.81	-3.59	1.93	0.12	10.71	-0.74	-0.71	-1.69	11.35	-0.69	-0.64	-1.61	4.69	
Cu ₂ O	-1.97	-0.24	1.51	0.22	-0.17	0.50	-1.44	0.00	1.27	0.04	-0.22	0.00	1.29	0.19	4.32	Over
Cr_2O_3	-2.89	-2.06	-0.82	-2.13	-1.28	-0.94	-1.94	-1.10	-0.31	-0.84	-1.47	-1.11	-0.31	-0.71	4.96	
Fe ₂ O ₃	-1.67	-0.67	1.35	-1.49	-1.03	-0.71	-1.64	-0.90	-0.03	-0.70	-0.89	-0.90	-0.14	-0.52	5.04	
MnO	-1.05	0.09	1.61	-0.05	-0.04	0.46	-0.81	0.10	1.14	0.39	-0.03	0.12	1.13	0.37	4.45	
NiO	-1.85	-0.46	1.27	-0.71	-0.35	0.18	-1.30	-0.22	1.00	-0.09	-0.79	-0.22	0.98	0.17	4.18	
V_2O_5	-0.45	-1.25	0.79	-0.03	19.02	19.47	18.12	19.28	20.03	19.26	20.02	19.09	19.55	10.92	3.57	
V ₂ O ₅ *	-0.25	-0.45	-0.20	-0.03	19.96	20.32	18.97	19.81	20.42	20.05	19.17	19.87	20.46	N/A	3.57	
V_2O_3	-2.11	-1.21	0.23	-1.07	0.31	0.52	-0.11	0.67	0.60	-0.15	0.33	0.61	0.57	0.17	5.55	Under
ZnO	-1.68	-0.73	0.38	-0.17	-0.51	-0.13	-1.13	-0.37	1.33	0.99	0.18	-0.41	1.33	1.23	3.25	
TiO ₂	4.30	1.74	0.93	0.71	0.32	0.67	-0.36	0.60	-3.64	-2.51	-0.61	0.58	-3.60	-2.96	4.59	

Figure S8: Colormap of the lattice parameter a relative approximation error. The layered structure $\rm V_2O_5*$ includes D3-BJ corrections.

4 Lattice Dynamics

Table S1: Experimental values of phonon vibrational modes, transverse and longitudinal optical (TO and LO) splitting, transverse and longitudinal acoustic (TA and LA) frequencies, and frequency wavenumbers ω_{ν} (cm⁻¹) that are infrared (g) and Raman (u) active for the transition metal oxides.

CuO^{28}	8–30	$\mathrm{Cu}_2\mathrm{O}^{28,31}$,32	$ZnO^{28,3}$	3–35	MnO^{36}	-38	CoO^{36} ,	39	NiO ^{36,4}	0
Mode	ω_{ν}	Mode	ω_{ν}	Mode	ω_{ν}	Mode	ω_{ν}	Mode	ω_{ν}	Mode	ω_{ν}
Ag	296	$\nu_{\rm TO}~{\rm F}_{1\rm u}$	146	$\nu_1 \to E_{2u}$	101	$\nu_{\rm LO}~(\Gamma)$	492	$\nu_{\rm LO} (\Gamma)$	523	$\nu_{\rm LO} (\Gamma)$	577
B_{1g}	344	$\nu_{\rm LO}~{\rm F}_{1\rm u}$	149	$\nu_2 \to E_{2u}$	437	$\nu_{\rm TO}$ (Γ)	258	$\nu_{\rm TO}$ (Γ)	350	$\nu_{\rm TO}$ (Γ)	387
B_{2g}	629	$\nu_{\rm TO,LO} \ F_{1u}$	176	$\nu_{\rm TO} \ {\rm E}_{1 {\rm u}}$	407	$\nu_{\rm TO}(X)$	348	$\nu_{\rm TO}(X)$	415	$\nu_{\rm TO}(X)$	430
A_{1u}	161	F_{2g}	514	$\nu_{\rm TO}~{\rm A}_{1\rm u}$	380	$\nu_{\mathrm{TA}}(X)$	161	$\nu_{\mathrm{TA}}(X)$	167	$\nu_{\mathrm{TA}}(X)$	181
A_{2u}	321	$\nu_{\rm TO}~{\rm F}_{1\rm u}$	634	$\nu_{\rm LO} \to E_{1u}$	583						
A_{3u}	478	$\nu_{\rm LO}~{\rm F}_{1\rm u}$	664	$\nu_{\rm LO}~A_{1u}$	574						
B_{1u}	147			$\nu_{\rm TO} \ {\rm E_{1g}}$	412						
B_{2u}	530			$\nu_{\rm LO} \ {\rm E}_{1{\rm g}}$	591						
B_{3u}	590			$\nu_{\rm TO} {\rm A}_{1 {\rm g}}$	380						
				$\nu_{\rm LO}~{\rm A}_{1{\rm g}}$	570						
${\rm TiO}_2$	41	${\rm Cr}_2{\rm O}_3{}^{42-}$	44	$\mathrm{Fe_2O_3}^4$	3,44	$V_2 O_3^{-45}$,46		V_2C	5 ⁴⁷	
Mode	ω_{ν}	Mode	ω_{ν}	Mode	$\omega_{ u}$	Mode	ω_{ν}	Mode	ω_{ν}	Mode	ω_{ν}
B _{1g}	143	$\nu_{1,\mathrm{TO}} \mathrm{E_g}$	417	$\nu_1 A_{1g}$	225	$\nu_1 A_{1g}$	234	$\nu_{1,\mathrm{TO}} \mathrm{B}_{1\mathrm{u}}$	140	$\nu_{3, TO} B_{2u}$	506
E_{2u}	447	$\nu_{2,\mathrm{TO}} \mathrm{E_g}$	444	$\nu_2 A_{1g}$	500	$\nu_2 A_{1g}$	501	$\nu_{1,\mathrm{LO}} \mathrm{B}_{1\mathrm{u}}$	140	$\nu_{3,\mathrm{LO}} \mathrm{B}_{2\mathrm{u}}$	844
A_{1g}	612	$\nu_{3,\mathrm{TO}} \mathrm{E_g}$	532	$\nu_1 E_g$	246	$\nu_1 E_g$	210	$\nu_{2,\mathrm{TO}} \mathrm{B}_{1\mathrm{u}}$	290	$\nu_{1,\mathrm{TO}} \mathrm{B}_{3\mathrm{u}}$	72
B_{2g}	826	$\nu_{4,\mathrm{TO}} \mathrm{E_g}$	613	$\nu_2 E_g$	290	$\nu_2 E_g$	246	$\nu_{2,\mathrm{LO}} \mathrm{B}_{1\mathrm{u}}$	290	$\nu_{1,\mathrm{LO}} \; \mathrm{B}_{3\mathrm{u}}$	78
		$\nu_{1,\mathrm{LO}} \mathrm{E_g}$	420	$\nu_3 E_g$	295	$\nu_3 E_g$	327	$\nu_{3,\mathrm{TO}} \mathrm{B}_{1\mathrm{u}}$	354	$\nu_{2,\mathrm{TO}} \; \mathrm{B}_{3\mathrm{u}}$	259
		$\nu_{2,\mathrm{LO}} \mathrm{E_g}$	446	$\nu_4 \mathrm{E_g}$	408	$\nu_4 \mathrm{E_g}$	595	$\nu_{3,\mathrm{LO}} \mathrm{B}_{1\mathrm{u}}$	354	$\nu_{2,\mathrm{LO}} \mathrm{B}_{3\mathrm{u}}$	267
		$\nu_{3,\mathrm{LO}} \mathrm{E_g}$	602	$\nu_5 E_g$	500			$\nu_{4,\mathrm{TO}} \; \mathrm{B_{1u}}$	472	$\nu_{3,\mathrm{TO}} \mathrm{B}_{3\mathrm{u}}$	302
		$\nu_{4,\mathrm{LO}} \mathrm{E_g}$	766	$\nu_6 E_g$	610			$\nu_{4,\mathrm{LO}} \mathrm{B}_{1\mathrm{u}}$	492	$\nu_{3,\mathrm{LO}} \mathrm{B}_{3\mathrm{u}}$	89
		$\nu_{1,\mathrm{TO}} \mathrm{A}_{1\mathrm{g}}$	538	$\nu_{1,\text{LO}} \to E_u$	660			$\nu_{5,\mathrm{TO}} \mathrm{B}_{1\mathrm{u}}$	570	$\nu_{4,\mathrm{TO}} \; \mathrm{B}_{\mathrm{3u}}$	411
		$\nu_{2,\mathrm{TO}} \mathrm{A}_{\mathrm{1g}}$	613	$\nu_{2,\mathrm{LO}} \mathrm{E_u}$	1320			$\nu_{5,\mathrm{LO}} \mathrm{B}_{1\mathrm{u}}$	570	$\nu_{4,\mathrm{LO}} \; \mathrm{B}_{\mathrm{3u}}$	585
		$\nu_{1,\mathrm{LO}} \mathrm{A}_{\mathrm{1g}}$	602					$\nu_{6,\mathrm{TO}} \mathrm{B}_{1\mathrm{u}}$	974	$\nu_{5,\mathrm{TO}} \; \mathrm{B}_{3\mathrm{u}}$	766
		$\nu_{2,\mathrm{LO}} \mathrm{A}_{\mathrm{1g}}$	759					$\nu_{6,\mathrm{LO}} \mathrm{B}_{1\mathrm{u}}$	1040	$\nu_{5,\mathrm{LO}} \mathrm{B}_{3\mathrm{u}}$	965
								$\nu_{1,\mathrm{TO}} \mathrm{B}_{2\mathrm{u}}$	213	$\nu_{6,\mathrm{TO}} \; \mathrm{B}_{3\mathrm{u}}$	981
								$\nu_{1,\mathrm{LO}} \mathrm{B}_{2\mathrm{u}}$	226	$\nu_{6,\mathrm{LO}} \mathrm{~B_{3u}}$	987
								$\nu_{2,\mathrm{TO}} \mathrm{B}_{2\mathrm{u}}$	285		
								$\nu_{2,\mathrm{LO}} \mathrm{B}_{2\mathrm{u}}$	314		

		Ehf (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00	
TMOs	Mode	ων	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS	
CoO	Eu	350	346.67	355.98	320.78	378.74	376.95	389.39	357.68	389.26	407.37	385.43	406.68	N/A	433.59	397.93	
CuO	B _{2u}	530	476.80	459.91	503.20	482.00	544.42	547.83	537.93	542.37	557.97	540.65	556.28	548.76	540.27	548.30	
Cu ₂ O	F1u	634	605.34	568.54	649.48	636.28	615.05	631.66	587.61	620.60	653.00	620.10	652.76	615.88	623.63	632.37	
Cr ₂ O ₃	Eg	444	408.17	406.98	414.35	421.83	437.73	438.73	436.84	443.33	448.25	N/A	N/A	442.76	452.84	N/A	
Fe ₂ O ₃	Eg	408	378.37	371.54	379.68	421.05	416.26	420.73	411.81	422.79	525.06	421.50	432.49	421.59	433.52	437.44	
MnO	Eu	258	156.92	126.08	147.67	183.63	248.04	255.27	231.55	264.23	274.97	260.81	271.95	242.94	282.34	288.99	
NiO	Eu	387	370.59	344.63	400.19	393.20	401.68	381.84	380.60	410.43	435.56	409.50	434.23	393.60	418.75	422.84	
V_2O_5	B _{2u}	506	419.48	427.06	449.30	428.83	493.29	522.34	507.28	522.71	528.40	519.98	527.03	519.96	530.57	528.79	
V_2O_3	A _{1g}	501	478.66	459.88	505.22	472.75	490.74	500.08	511.91	498.41	516.30	N/A	N/A	490.14	508.30	N/A	
ZnO	E _{1u}	407	398.20	382.70	423.16	417.25	421.27	429.34	409.12	427.19	445.29	426.24	444.08	411.07	435.61	440.22	
TiO ₂	A_{1g}	612	575.65	559.99	598.91	608.82	605.11	613.10	594.08	614.44	630.99	613.17	629.70	599.05	627.25	633.48	

Figure S9: Calculated harmonic phonon vibrations at the Γ point for the selected modes of TMOs according to S1. N/A correspond to calculations that did not converge. The cyan box in V₂O₅ for PBE0-1/3 only converged with no D3-BJ, and in HISS D3-BJ is not available.

1

Table S2: Table showing phonon vibrations at the Γ point: TMOs number of modes with imaginary frequencies (yellow), TMOs with one negative eigenvalue without imaginary frequency (*), and N/A indicates phonon calculations that did not converge.

TMOs	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	PBE0-13	M06	HSE06	HISS	HSESOL
CoO	0	0	0	*	0	*	0	*	*	*	N/A	0	0	*
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cu ₂ O	0	0	0	0	0	0	*	0	0	0	*	0	0	*
Cr ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	N/A	N/A	N/A
Fe ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MnO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	*	0	0	*	0	0	*	0	0	0	0	*	0	0
V2O5	0	0	0	0	0	5	5	5	5	5	5	5	*	5
V_2O_3	0	0	0	0	0	0	0	0	0	0	0	N/A	N/A	N/A
ZnO	*	*	0	*	*	*	*	*	0	*	*	0	0	*
TiO ₂	3	4	1	0	3	1	4	3	0	*	4	*	0	0

5 Electronic Properties

5.1 Band Structure and Density of States

	E _{HF} (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	Eg (eV)	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	2.60	0.00	0.00	0.00	0.32	3.60	3.53	3.62	4.47	4.26	3.70	3.47	0.00	5.59	5.11
CuO	1.70	0.00	0.00	0.00	0.37	2.53	2.59	1.90	3.41	3.30	2.68	2.58	2.64	4.23	3.75
Cu ₂ O	2.17	0.45	0.47	0.52	0.58	1.94	1.93	1.97	2.31	2.37	1.79	1.86	2.35	3.02	2.66
Cr ₂ O ₃	3.40	1.27	1.30	1.03	2.05	4.25	4.22	4.26	4.99	4.84	4.28	4.11	4.47	6.23	5.55
Fe ₂ O ₃	2.20	0.32	0.33	0.05	1.28	3.02	3.02	2.97	3.74	3.63	3.03	2.95	3.54	4.92	4.04
MnO	3.60	1.11	1.26	1.12	1.39	3.39	3.34	3.47	3.85	3.92	3.18	3.23	3.86	4.87	4.40
NiO	4.30	0.97	0.98	0.77	2.06	4.33	4.36	4.25	5.24	5.16	4.51	4.42	4.57	6.47	5.75
V_2O_5	2.30	1.77	1.69	1.73	2.04	2.47	2.48	2.44	2.82	2.48	2.29	2.29	2.80	3.44	N/A
V_2O_3	N/A	0.00	0.00	0.00	0.00	2.14	2.06	2.28	2.84	2.62	2.09	1.87	2.46	4.07	3.47
ZnO	3.20	1.15	1.20	1.10	1.43	3.10	3.05	3.08	3.55	3.52	2.91	2.89	3.22	4.42	3.99
TiO ₂	3.30	1.73	1.69	1.74	2.02	3.48	3.49	3.44	3.96	3.96	3.26	3.25	3.89	4.78	4.03

Figure S10: Band gap (E_g) values calculated with different density functionals. Experimental data (first column) references: CoO, ^{48–50} CuO, ^{51,52} Cu₂O, ⁵³ Cr₂O₃, ^{54,55} Fe₂O₃, ⁵⁶ MnO, ^{48,49,57} NiO, ^{48,58} V₂O₅, ^{59,60} ZnO, ⁶¹ TiO₂. ⁵⁹

			u/11101)
DF	CoO	NiO	MnO
BLYP	-0.48	-6.33	-4.33
PBE	-5.02	-6.70	-4.30
PBESOL	-6.28	-6.80	-4.26
M06L	-3.13	-3.68	-2.22
B3PW	-1.71	-2.67	-1.93
B3PBE	-25.88	-2.80	-2.58
B3LYP	-27.55	-2.65	-1.95
PBE0	-15.03	-2.26	-1.71
PBESOLO	-31.12	-3.82	-1.97
PBE0-1/3	-19.08	-1.78	-2.18
M06	1.03	-2.87	-0.71
HSE06	-22.18	-2.38	-1.82
HSESOL	-12.78	-3.47	-2.08
HISS	-30.77	-2.01	-1.72

 $\Delta E_{FM \rightarrow AFM}$ (kcal/mol)

Table S3: Calculated exchange energy $\Delta E_{\rm X}$ in kcal·mol⁻¹ for magnetic phase transition with difference XC functionals. The spin transition is from ferromagtic (FM) to antiferromagnetic

(AFII) of rock salt structure CoO, NiO and MnO.

Figure S11: Band structure in the first path of the Brillouin zone for open-shell transition metal monoxides, cubic systems CoO, NiO, and MnO, and first two paths for monoclinic CuO. The lines and numbers at the top show the amount of $E_{\rm HF}$ exchange for each density functional.

Figure S12: Band structure in the first path of the Brillouin zone for open-shell transition metal trioxide trigonal systems V_2O_3 , Fe_2O_3 , Cr_2O_3 . The lines and numbers at the top show the amount of $E_{\rm HF}$ exchange for each density functional.

Figure S13: Band structure in the first path of the Brillouin zone for closed-shell transition metal trigonal ZnO, and the first two paths for tetragonal TiO₂, orthorombic V₂O₅, and cubic Cu₂O. The lines and numbers at the top show the amount of $E_{\rm HF}$ exchange for each density functional. The band path circled in yellow (HISS) in V₂O₅ does not include D3 corrections.

B3PBE

B3LYP

B3PW

M06

PBE0

PBESOL0

PBE0-1/3

HSE06 HSESOL HISS

Figure S14: Band structure and density of states for CoO calculated with different density functionals. Color-code DOS projections: red = total, $light \ blue = cobalt$, pink = oxygen.

B3PW

B3PBE

B3LYP

PBEO PBESOLO PBEO-1/3 MO6

Figure S15: Band structure and density of states for Cr_2O_3 calculated with different density functionals. Color-code DOS projections: red = total, $light \ blue = chromium$, pink = oxygen.

B3LYP

M06L

B3PBE

PBE0

PBE0-1/3

Figure S16: Band structure and density of states for Cu_2O calculated with different density functionals. Color-code DOS projections: red = total, orange = copper, green = oxygen.

PBE

PBESOL

BLYP

Figure S17: Band structure and density of states for CuO calculated with different density functionals. Color-code DOS projections: red = total, $light \ blue = copper$, pink = oxygen.

B3PW

B3PBE

B3LYP

PBE0

PBE0-1/3

Figure S18: Band structure and density of states for Fe_2O_3 calculated with different density functionals. Color-code DOS projections: red = total, $light \ blue = iron$, pink = oxygen.

PBE

M06L

B3PW

B3PBE

B3LYP

PBE0

PBESOL0

PBE0-1/3

Figure S19: Band structure and density of states for MnO calculated with different density functionals. Color-code DOS projections: red = total, light blue = manganese, pink = oxygen.

B3PBE

B3LYP

B3PW

PBE0-1/3

PBE0

M06

Figure S20: Band structure and density of states for NiO calculated with different density functionals. Color-code DOS projections: red = total, $light \ blue = nickel$, pink = oxygen.

ī

B3PBE

B3LYP

B3PW

PBE0

PBESOL0

PBE0-1/3

M06

HSE06 HSESOL HISS

Figure S21: Band structure and density of states for TiO2 calculated with different density functionals. Color-code DOS projections: light green = total, pale pink = titanium, grey =oxygen.

B3PW

B3PBE

B3LYP

PBE0

PBESOL0

PBE0-1/3

Figure S22: Band structure and density of states for V_2O_3 calculated with different density functionals. Color-code DOS projections: red = total, $light \ blue = vanadium$, pink = oxygen.

B3PBE

B3LYP

PBE0

PBESOL0

PBE0-1/3

Figure S23: Band structure and density of states for V_2O_5 calculated with different density functionals. Color-code DOS projections: *light green* = total, *pale pink* = vanadium, *grey* = oxygen.

PBE

PBESOL

M06L

B3PW

B3PBE

B3LYP

PBE0

Figure S24: Band structure and density of states for ZnO calculated with different density functionals. Color-code DOS projections: red = total, orange = zinc, green = oxygen.

	E _{HF} (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	μ _Β	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBEO	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	3.58	2.38	2.47	2.30	2.54	2.69	2.69	2.69	2.72	2.69	2.71	2.69	2.58	2.76	2.75
CuO	0.67	0.00	0.00	0.00	0.49	0.59	0.60	0.58	0.63	0.62	0.63	0.61	0.54	0.68	0.67
Cr_2O_3	3.80	2.85	2.82	2.79	2.95	3.00	2.99	2.95	3.01	3.00	3.00	2.99	3.22	3.02	3.01
Fe ₂ O ₃	4.64	3.74	3.71	3.46	4.10	4.27	4.27	4.23	4.32	4.31	4.31	4.30	4.28	4.39	4.39
MnO	5.00	4.60	4.56	4.54	4.61	4.77	4.76	4.73	4.79	4.76	4.78	4.76	4.83	4.81	4.82
NiO	1.77	1.35	1.36	1.27	1.55	1.63	1.63	1.64	1.67	1.63	1.66	1.63	1.58	1.71	1.70
V_2O_3	2.37	1.61	1.66	1.36	1.87	2.00	2.00	1.98	2.02	2.01	2.01	2.00	2.16	2.03	2.03

Figure S25: Magnetic moment (μ_B) values calculated with different density functionals. Experimental data (first column) references: CoO,^{62,63} CuO,⁶² Cr₂O₃,⁶⁴ Fe₂O₃,^{62,65} MnO,^{63,66} NiO,^{62,63,66} V₂O₃.⁶⁷

To understand how the different DFs affect charge distribution and the nature of the TM-O bonding, a colormap describing electron distribution around atoms is shown in Figure S28. The values in Figure S28 are the TMO charge differences ($\Delta Q_{\rm TMO}$), defined as the difference between TM ($\delta q_{\rm TM}$) and O ($\delta q_{\rm O}$) partial charges obtained through the Mulliken population analysis:

$$\Delta Q_{\rm TMO} = \delta q_{\rm TM} - \delta q_{\rm O} \tag{17}$$

The Mulliken population analysis is an orbital-based approach that separates the charge population near a nucleus into atomic orbitals and overlap populations. Colormaps for the partial charges of the TM and oxygen in the TMOs are available in Figures S26 and S27.

In Figure S28, the color scale is applied to each row in the colormap separately, to illustrate how charge populations change as a function of the DF, since it is not meaningful to compare the character of the TM-O bonding between TMOs, as they are unique. The nature of the TM-O bond varies between more covalent-like and more ionic-like bonding character, reflecting differences in the electron density charge delocalization. In the colormap, blue indicate a higher partial charge difference between the metal and the oxygen, therefore a more ionic character, while yellow colors indicate more covalent-like character, corresponding to lower partial charge differences and thus bonds where the electrons tend to be more distributed between the atoms.

The bonding in TMOs is primarily ionic with some back-donation of charge from filled oxygen orbitals to the TM atoms. This back-donation introduces some covalent bonding character reducing the ionic charges, and changing in magnitude the bonding strength in the different TMOs systems.⁶⁸ The colormap in Figure S28 shows that the calculated bond ionicity depends on the choice of the XC functional. At the top of the figure, the amount $E_{\rm HF}$ in each DF is indicated to highlight how addition of exact exchange influences electron delocalization. For the semi-local approximations with no inclusion of $E_{\rm HF}$, namely PBE, BLYP, PBESOL and M06L, delocalization errors play an important role and the bonding tends toward covalency, indicated by the dark yellow colors. On the other hand, addition of larger amounts of $E_{\rm HF}$ seems to shift electron delocalization towards a higher ionic character, indicated by the blue colors. The lighter shades of yellow/blue are for the intermediate cases of the global hybrids and RSH with $E_{\rm HF}$

TMOs	
CoO	2.60
CuO	1.70
Cu ₂ O	2.17
Cr ₂ O ₃	3.40
Fe ₂ O ₃	2.20
	3.60
	4.30
	2.30
	N/A
	3.20
	3.30

Ehf (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	1.57	1.70	1.54	1.59	1.94	1.91	2.01	1.97	1.96	1.97	1.96	1.84	2.07	2.15
CuO	1.33	1.36	1.32	1.47	1.68	1.66	1.70	1.74	1.72	1.73	1.72	1.56	1.87	1.90
Cu ₂ O	1.20	1.21	1.23	1.29	1.35	1.34	1.35	1.37	1.39	1.37	1.39	1.26	1.42	1.45
Cr ₂ O ₃	2.25	2.36	2.21	2.36	2.62	2.58	2.68	2.66	2.65	2.66	2.65	2.60	2.80	2.86
Fe ₂ O ₃	1.92	1.99	1.82	2.18	2.34	2.30	2.39	2.40	2.36	2.39	2.35	2.30	2.53	2.57
MnO	1.70	1.82	1.67	1.66	1.99	1.95	2.06	2.01	1.99	2.01	1.99	1.95	2.09	2.17
NiO	1.53	1.63	1.51	1.55	1.92	1.88	1.98	1.96	1.94	1.96	1.94	1.80	2.07	2.14
V_2O_5	2.20	2.22	2.15	2.30	2.10	2.05	2.17	2.12	2.05	2.12	2.05	2.14	2.21	2.19
$V_2O_5^{\star}$	2.21	2.25	2.16	2.14	2.11	2.04	2.19	2.13	1.99	2.12	2.06	2.17	2.24	N/A
V_2O_3	2.17	2.29	2.10	2.33	2.55	2.50	2.61	2.59	2.55	2.58	2.54	2.54	2.71	2.77
ZnO	1.72	1.73	1.68	1.87	1.92	1.90	1.92	1.96	1.92	1.95	1.92	1.78	2.03	2.08
TiO ₂	2.64	2.71	2.55	2.92	2.90	2.86	2.95	2.94	2.87	2.95	2.88	2.93	3.04	3.10

Figure S26: Absolute values of Mulliken population charges on the transition metal of the TMOs.

Ehf (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	-0.79	-0.85	-0.77	-0.79	-0.97	-0.95	-1.00	-0.98	-0.98	-0.99	-0.98	-0.92	-1.04	-1.08
CuO	-0.67	-0.68	-0.66	-0.74	-0.84	-0.83	-0.85	-0.87	-0.86	-0.87	-0.86	-0.78	-0.94	-0.95
Cu ₂ O	-0.80	-0.81	-0.82	-0.86	-0.90	-0.90	-0.90	-0.91	-0.92	-0.91	-0.93	-0.84	-0.94	-0.97
Cr_2O_3	-0.90	-0.94	-0.88	-0.94	-1.05	-1.03	-1.07	-1.07	-1.06	-1.07	-1.06	-1.04	-1.12	-1.14
Fe ₂ O ₃	-0.77	-0.80	-0.73	-0.87	-0.94	-0.92	-0.95	-0.96	-0.94	-0.96	-0.94	-0.92	-1.01	-1.03
MnO	-0.85	-0.91	-0.84	-0.83	-1.00	-0.97	-1.03	-1.00	-0.99	-1.01	-1.00	-0.97	-1.05	-1.09
NiO	-0.77	-0.82	-0.75	-0.78	-0.96	-0.94	-0.99	-0.98	-0.97	-0.98	-0.97	-0.90	-1.04	-1.07
V_2O_5	-0.78	-0.78	-0.76	-0.66	-0.59	-0.57	-0.60	-0.59	-0.57	-0.59	-0.57	-0.60	-0.61	-0.55
$V_2O_5^{\star}$	-0.78	-0.79	-0.76	-0.50	-0.60	-0.58	-0.63	-0.60	-0.56	-0.60	-0.58	-0.61	-0.63	N/A
V_2O_3	-0.87	-0.92	-0.84	-0.93	-1.02	-1.00	-1.04	-1.03	-1.02	-1.03	-1.02	-1.02	-1.08	-1.11
ZnO	-0.86	-0.87	-0.84	-0.94	-0.96	-0.95	-0.96	-0.98	-0.96	-0.98	-0.96	-0.89	-1.01	-1.04
TiO ₂	-0.88	-0.90	-0.85	-0.97	-0.97	-0.95	-0.98	-0.98	-0.96	-0.98	-0.96	-0.98	-1.01	-1.03

Figure S27: Absolute values of Mulliken population charges on the oxygen of the TMOs.

Ehf (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00
TMOs	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS
CoO	0.79	0.85	0.77	0.79	0.97	0.95	1.00	0.98	0.98	0.99	0.98	0.92	1.04	1.08
CuO	0.67	0.68	0.66	0.74	0.84	0.83	0.85	0.87	0.86	0.87	0.86	0.78	0.93	0.95
Cu ₂ O	0.40	0.40	0.41	0.43	0.45	0.45	0.45	0.46	0.46	0.46	0.46	0.42	0.47	0.48
Cr_2O_3	1.35	1.41	1.33	1.41	1.57	1.55	1.61	1.60	1.59	1.60	1.59	1.56	1.68	1.71
Fe ₂ O ₃	1.15	1.20	1.09	1.31	1.40	1.38	1.43	1.44	1.42	1.43	1.41	1.38	1.52	1.54
MnO	0.85	0.91	0.84	0.83	1.00	0.97	1.03	1.00	0.99	1.00	1.00	0.97	1.05	1.08
NiO	0.77	0.82	0.75	0.78	0.96	0.94	0.99	0.98	0.97	0.98	0.97	0.90	1.04	1.07
V_2O_5	1.43	1.44	1.39	1.64	1.51	1.47	1.57	1.53	1.48	1.53	1.48	1.54	1.60	1.64
$V_2O_5^{\star}$	1.44	1.47	1.40	1.64	1.51	1.46	1.57	1.53	1.43	1.52	1.48	1.56	1.60	N/A
V_2O_3	1.30	1.37	1.26	1.39	1.53	1.50	1.57	1.55	1.53	1.55	1.53	1.52	1.62	1.66
ZnO	0.86	0.87	0.84	0.94	0.96	0.95	0.96	0.98	0.96	0.98	0.96	0.89	1.01	1.04
TiO ₂	1.76	1.81	1.70	1.95	1.93	1.90	1.97	1.96	1.91	1.97	1.92	1.95	2.02	2.07

Figure S28: Colormap showing the differences between the transition metal and oxygen partial charges; the color scale indicates the tendency towards more ionic or covalent nature of TM-O bonding. The layered structure $V_2O_5^*$ includes D3-BJ corrections.

ranging between 20 and 25 %. There is no significant difference in colors and values between PBE0/PBESOL0 and HSE06/HSESOL, suggesting that the short-range screened functionals produce similar charge distributions as the global hybrids. For M06, a generally stronger yellow color indicates that the hybrid mGGA has a tendency to the describe the nature of TM-O bond as more covalent, regardless of the fact that it contains 27 % of $E_{\rm HF}$.

The higher partial charge differences for B3LYP (indicated by the blue colors), in comparison to B3PW and B3PBE (light yellow colors), show that the correlation part of this XC functional shifts the bonding slightly towards being more ionic. The partial charge differences for the layered structure V_2O_5 , and $V_2O_5^*$ with D3-BJ corrections, show an interesting effect. The semi-local approximations, paricularly PBE and BLYP, mostly produce a more ionic character, as does M06L when dispersion corrections are not included. All global hybrids, except for B3LYP, tend towards more covalency (bright yellow). The bonding nature shifts towards more ionic character again for XC functionals with the highest values of $E_{\rm HF}$, PBE0-1/3 and HISS. This is in stark contrast to the results for other TMOs; specifically, the change in bond character between the semi-local approximations and the global hybrids is reversed for V_2O_5 and $V_2O_5^*$ compared with the other TMOs. This anomalous behavior of the layered TMO was also noted in the discussion of E_q and, as previously mentioned, is an interesting topic for further investigation.

Charge distribution schemes can indicate the locations where electrons tend to accumulate or be depleted. This can be used, for example, to understand electron density in a material's surface and hence to map where molecular species are most likely to interact at the surface of a material, which is useful for many applications, including catalysis.

	E _{HF} (%)	0.00	0.00	0.00	0.00	20.00	20.00	20.00	20.00	25.00	25.00	25.00	25.00	27.00	33.33	60.00	
TMOs	ď	PBE	BLYP	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0-15	PBEO	PBESOLO	HSE06	HSESOL	M06	PBE0-13	HISS	Max.
MnO	<i>d</i> ⁵	4.72	4.72	4.64	4.85	4.92	4.92	4.92	4.92	4.94	4.92	4.93	4.92	4.94	4.95	4.95	
CoO	d7	2.02	2.40	1.93	2.24	2.93	2.93	2.94	2.94	2.95	2.94	2.95	2.93	2.69	2.97	2.96	
NiO	0 ⁸	1.51	1.53	1.39	1.79	1.91	1.91	1.91	1.91	1.94	1.92	1.93	1.91	1.92	1.96	1.95	
CuO	d9	0.00	0.00	0.00	1.45	1.88	1.87	1.90	1.87	1.91	1.90	1.89	1.87	1.90	2.97	1.93	
V_2O_3	<i>d</i> ²	6.04	6.45	4.85	7.32	7.82	7.79	7.86	7.81	7.88	7.82	7.86	7.78	7.85	7.95	7.95	
Cr_2O_3	d ³	5.65	5.69	5.49	5.91	5.96	5.96	5.97	5.96	5.98	5.97	5.97	5.96	6.07	6.00	5.99	
Fe ₂ O ₃	d ⁵	8.07	8.07	7.31	9.25	9.62	9.62	9.61	9.63	9.72	9.70	9.69	9.66	9.70	9.82	9.79	Min.

5.1.2 Spin Contamination

Figure S29: Colormap showing the predicted spin operator $\langle \hat{S}^2 \rangle_{UKS}$; the color scale indicates lowest (orange), midpoint (yellow), highest (purple) calculated values for each open-shell TMO.

5.2 Optical Properties

	E _{HF} (%)	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	33.33
TMOs	€∞	PBE	BLYP	PBESOL	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	PBE0-13
CoO	5.30	2.21	3.30	7.62	4.81	4.84	4.77	4.41	4.51	3.97
CuO	5.90	4.40	2.74	2.10	5.77	5.79	5.65	5.05	5.21	4.33
Cu ₂ O	6.46	8.29	7.50	8.52	5.80	5.94	5.52	5.55	5.60	5.04
Cr ₂ O ₃	5.97	9.06	8.98	6.68	5.35	5.36	5.28	5.04	5.11	4.64
Fe ₂ O ₃	6.70	3.74	5.43	4.14	6.29	6.26	6.39	5.59	5.66	4.86
MnO	4.95	7.43	7.62	7.74	4.37	4.41	4.32	4.14	4.20	3.83
NiO	5.70	1.72	1.75	2.16	5.14	5.16	5.12	4.61	4.74	4.06
V_2O_3	N/A	3.45	3.94	3.74	4.37	6.11	5.87	5.40	5.56	4.74
ZnO	3.75	4.35	4.13	4.55	3.33	3.37	3.28	3.23	3.28	3.07
TiO ₂	7.37	7.87	7.82	7.97	6.16	6.16	6.12	5.85	5.89	5.42

Figure S30: High frequency dielectric constants (ε_{∞}) calculated through Coupled-Perturbed Kohn-Sham (CPKS) scheme, compared to experimental values. Experimental data (first column) references: CoO,^{39,69} CuO (|| *b* axis),^{30,70} Cu₂O,²⁸ Cr₂O₃ (|| *c* axis),⁷¹ Fe₂O₃,⁴⁴ MnO,^{38,69} NiO,^{40,69} ZnO (|| *c* axis),^{72–74} and TiO₂ (average along *a*, *b*, and *c*).^{75,76}

6 Average Performances

	E _{HF} (%)	0.00	0.00	0.00	20.00	20.00	20.00	25.00	25.00	33.33	
TMOs	n	PBE	BLYP	PBESOL	B3PW	B3PBE	B3LYP	PBE0	PBESOLO	PBE0-13	
CoO	N/A	2.33	5.57	2.76	2.19	2.20	2.18	2.10	2.12	1.99	
CuO	2.63	3.03	5.01	3.51	2.40	2.40	2.37	2.25	2.28	2.08	
Cu ₂ O	2.84	2.88	2.74	2.92	2.41	2.44	2.35	2.35	2.37	2.24	
Cr ₂ O ₃	N/A	3.01	3.00	3.15	2.31	2.32	2.30	2.24	2.26	2.15	
Fe ₂ O ₃	2.91	6.07	7.31	6.39	2.50	2.50	2.52	2.36	2.38	2.20	
MnO	2.16	2.72	2.76	2.78	2.09	2.10	2.08	2.04	2.05	1.96	
NiO	2.37	4.15	4.18	4.65	2.27	2.27	2.26	2.15	2.18	2.01	
V_2O_3	2.80	3.45	2.42	4.93	2.78	2.47	2.42	2.32	2.36	2.18	
ZnO	2.01	2.08	2.03	2.13	1.82	1.83	1.81	1.80	1.81	1.75	
TiO ₂	2.61	2.80	2.79	2.82	2.48	2.48	2.47	2.42	2.42	2.32	

Figure S31: Refractive indices (n) calculated through the Coupled-Perturbed Kohn-Sham (CPKS) scheme, compared to experimental values. Experimental data (first column) references: CuO, ^{77,78} Cu₂O, ⁷⁷ Fe₂O₃, ^{61,79} MnO, ^{77,79} NiO, ⁷⁷ V₂O₃, ⁸⁰ ZnO, ^{61,77,79} and TiO₂. ^{61,77,79,81}

		GGA	. 1	mGGA		Global Hybrid						Hybrid Range-Separated mGGA Hybrid			ırated	
	BLYP	PBE	PBESOL	M06L	B3PW	B3PBE	B3LYP	PBE0-15	PBEO	PBESOLO	PBE0-13	M06	HSE06	HSESOL	HISS	Max
Eg	63.13	63.58	66.44	53.99	18.29	18.85	14.02	19.67	37.79	34.19	72.85	23.31	20.82	17.94	54.40	
μв	23.11	23.60	27.92	18.62	13.22	13.24	13.91	13.12	11.65	12.46	10.46	13.17	11.97	12.75	10.22	
ρ _{bulk}	6.16	4.27	4.31	1.95	3.02	2.79	4.78	1.66	1.77	3.49	1.90	1.82	2.00	3.45	3.20	
ων	12.99	9.45	8.53	7.29	3.06	2.80	2.85	2.71	3.37	6.34	6.29	2.56	3.58	7.10	6.90	
n	46.38	32.61	46.42	N/A	7.56	8.68	9.67	8.32	12.60	11.83	17.08	N/A	N/A	N/A	N/A	
£∞	40.47	45.90	48.98	N/A	10.72	10.13	12.16	10.50	16.77	15.95	24.42	N/A	N/A	N/A	N/A	
t/SCF	4.78	4.81	4.78	5.03	21.70	21.39	21.60	21.36	21.39	21.23	20.91	21.49	58.11	57.96	59.10	Min.

Figure S32: Colormap showing the average of absolute approximation error (δ_{avg}) for band gap (E_g) , magnetic moment (μ_{B}) , bulk density (ρ_{bulk}) , vibrational frequency (ω_{ν}) , refractive index (n), dielectric constant (ε_{∞}) , and computational cost (t/SCF).

Figure S33: Spider plots of normalized average of absolute approximation error (δ_{avg}) for band gap (E_g) , magnetic moment (μ_B) , bulk density (ρ_{bulk}) , vibrational frequency (ω_{ν}) , refractive index (n), dielectric constant (ε_{∞}) , and computational cost (t/SCF).

7 Input Details

7.1 Geometry Input Files

 TiO_2

CRYSTAL 000 136 $4.59\ 2.96$ 2 $22 \ .0 \ .0 \ .0$ $8 \ .305 \ .305 \ .0$ OPTGEOM FULLOPTG END (...) 99.0 END DFT (...) END SHRINK 88 TOLINTEG 888816 TOLDEE 8 MAXCYCLE 200 FMIXING 80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END

V_2O_5

CRYSTAL 0 0 0 59 11.544 3.571 4.383 90.0 4 23 0.60123 0.25 0.1086 8 0.43090 0.25 -0.0028

 $8 \ 0.10450 \ 0.25 \ 0.4697$ $8 \ 0.75000 \ 0.25 \ 0.4697$ OPTGEOM FULLOPTG END END (...) $99\ 0$ END DFT (...) END SHRINK 88 TOLINTEG 888816 TOLDEE 8 MAXCYCLE 200FMIXING 90 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END

V_2O_3

CRYSTAL $1 \ 0 \ 0$ P 1 2/c 1 $5.54800 \ 5.00200 \ 7.25500 \ 96.75000$ 6 $23\ 0.29930\ \text{-}0.00120\ 0.34390$ $23 \ 0.79930 \ 0.49880 \ 0.84390$ 8 0.15100 0.65300 -0.09400 8 0.65100 0.15300 0.40600 $8 \ 0.00000 \ 0.80400 \ 0.25000$ $8 \hspace{0.1cm} 0.50000 \hspace{0.1cm} 0.69600 \hspace{0.1cm} 0.25000$ OPTGEOM FULLOPTG END END (...)

99 0 END DFT (...) SPIN END SHRINK 88 TOLINTEG 888816 TOLDEE 8 ATOMSPIN 8 $1 \ \text{--}1 \ 2 \ \text{-}1 \ 3 \ \text{-}1 \ 4 \ \text{-}1 \ 5 \ 1 \ 6 \ 1 \ 7 \ 1 \ 8 \ 1$ MAXCYCLE 200 FMIXING 80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END

$\mathrm{Cr}_2\mathrm{O}_3$

CRYSTAL $0 \ 0 \ 0$ 1674.9570 13.5923 224 0.0 0.0 0.34751 $8 \ 0.3057 \ 0.0 \ 0.25$ SYMMREMO OPTGEOM FULLOPTG END END (...) $99\ 0$ END DFT (...) SPIN END

SHRINK 88 TOLINTEG 888816 TOLDEE 8 ATOMSPIN 4 1 1 2 -1 3 1 4 -1 MAXCYCLE 200 FMIXING 90 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END MnO CRYSTAL 000 2254.4452 $25\ 0.0\ 0.0\ 0.0$ 8 0.5 0.5 0.5 SUPERCEL 0. 1. 1. 1. 0. 1. 1. 1. 0. OPTGEOM FULLOPTG END END (...) 99~0END \mathbf{DFT} (...) SPIN END SHRINK 88 TOLINTEG

888816 TOLDEE 8 ATOMSPIN 2 $1\ 1\ 2\ -1$ MAXCYCLE 200 FMIXING 80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END Fe_2O_3 CRYSTAL 000 161 $5.07872491 \ 13.64420305$ 3 26 3.3333333333333E-01 -3.3333333333333E-01 2.479007691805E-02 26 -1.695676559034E-19 -1.073311903397E-19 1.418783418267E-01 $8 \ 3.333342514328 {\hbox{\scriptsize E-01}} \ 3.625696590101 {\hbox{\scriptsize E-01}} \ -8.333391735936 {\hbox{\scriptsize E-02}} \\$ OPTGEOM FULLOPTG END END (...) 99 0 END DFT (...) SPIN END SHRINK 88 TOLINTEG 888816 TOLDEE 8 ATOMSPIN 4

1 1 2 1 3 -1 4 -1

MAXCYCLE 200FMIXING 80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END CoO CRYSTAL 000 2254.2602 $27\ 0.0\ 0.0\ 0.0$ $8 \ 0.5 \ 0.5 \ 0.5$ SUPERCEL 0. 1. 1. 1. 0. 1. 1. 1. 0. OPTGEOM FULLOPTG END END (...) 99.0END DFT (...) SPIN END SHRINK 88 TOLINTEG $8\ 8\ 8\ 8\ 16$ TOLDEE 8 ATOMSPIN 21 1 2 -1 MAXCYCLE 200 FMIXING

80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END

NiO

CRYSTAL 000 2254.1782 $28\ 0.0\ 0.0\ 0.0$ $8 \ 0.5 \ 0.5 \ 0.5$ SUPERCEL $0. \ 1. \ 1.$ $1. \ 0. \ 1.$ 1. 1. 0. OPTGEOM FULLOPTG END END (...) $99\ 0$ END DFT(...) SPIN END SHRINK 88 TOLINTEG 888816 TOLDEE 8 ATOMSPIN 2 $1\ 1\ 2\ -1$ MAXCYCLE 200FMIXING 80 EXCHSIZE 30000000

BIPOSIZE 30000000 PPAN SCFDIR END Cu_2O CRYSTAL $0 \ 0 \ 0$ 2244.317522822 $29\ 0.00\ 0.00\ 0.00$ 8 0.25 0.25 0.25 OPTGEOM FULLOPTG END END (...) 99.0END DFT (...) END SHRINK 88 TOLINTEG 888816 TOLDEE 8 MAXCYCLE 200 FMIXING 90 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END CuO

CRYSTAL

 $\begin{array}{c} 0 & 0 & 0 \\ 9 \end{array}$

 $4.6927 \ 3.4283 \ 5.1370 \ 90 \ 99.546$ 2 29 0.25 0.2467 0.0 $8 \ 0.0104 \ 0.4177 \ 0.2602$ SUPERCEL $1 \ 0 \ 1$ $0\ 1\ 0$ -101 OPTGEOM FULLOPTG END END (...) $99\ 0$ END DFT (...) SPIN END SHRINK 88 TOLINTEG 888816 TOLDEE 8 ATOMSPIN 4 1 1 2 -1 3 1 4 -1 MAXCYCLE 200 FMIXING 80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END ZnO

CRYSTAL 0 0 0 186 3.25419751 5.18818216 2 30 3.3333333333333-01 -3.333333333333-01 -1.177223560513E-04 8 3.3333333333333E-01 -3.333333333333E-01 3.826177223561E-01 OPTGEOM FULLOPTG END END (...) <u>99</u>0 END DFT(...) END SHRINK 88 TOLINTEG 888816 TOLDEE 8 MAXCYCLE 200FMIXING 80 EXCHSIZE 30000000 BIPOSIZE 30000000 PPAN SCFDIR END

7.2 Basis Sets

The def2-TZVP basis sets⁸² optimized for periodic systems were obtained by Karttunen, Linnera, and *et al.* from different publications:oxygen and zinc,⁸³ nickel,¹⁵ copper,⁸⁴ titanium,⁸⁵ manganese and cobalt,⁶⁹ iron and vanadium.⁶² For chromium, we adapted the def2-TZVP from the TURBOMOLE to CRYSTAL format, as reported in the basis set exchange (BSE) database (www.basissetexchange.org).⁸⁶ Comparison of def2-TZVP to pob-TZVP,⁸⁷ which was developed to solids, in terms of optimized geometry parameters, band gap, and computational cost, for all TMOs showed equivalent performance and accuracy.

Oxygen

87	
$0\ 0\ 6\ 2.0\ 1.0$	
27032.382631	0.21726302465 E-03
4052.3871392	0.16838662199E-02
922.32722710	0.87395616265 E-02
261.24070989	0.35239968808E-01
85.354641351	0.11153519115
31.035035245	0.25588953961
$0\ 0\ 2\ 2.0\ 1.0$	
12.271113873	0.39768730901
4.9159842006	0.24627849430
$0 \ 0 \ 1 \ 0.0 \ 1.0$	
0.90086482370	1.0
$0\ 1\ 1\ 0.0\ 1.0$	
0.25 1.0	1.0
$0\ 2\ 4\ 4.0\ 1.0$	
75.300554155	0.60685103418E-02
17.743733858	0.41912575824E-01
5.5355828651	0.16153841088
2.0685535103	0.35706951311
$0\ 2\ 1\ 0.0\ 1.0$	
0.78238772422	1.0
$0\ 3\ 1\ 0.0\ 1.0$	
1.20 1.0	

Titanium

22 12	
$0\ 0\ 8\ 2.\ 1.$	
211575.69025	.23318151011E-03
31714.945058	.18079690851 E-02
7217.5476543	.93984311352E-02
2042.9394247	.38156853618E-01
665.12896208	.12374757197
238.74942264	.29208551143
92.508691001	.41226800855
36.403919209	.21090534061

$0\ 0\ 4\ 2.\ 1.$	
232.72624607	24920140738E-01
71.791209711	11746490087
11.158534615	.56503342318
4.6548135416	.56211101812
$0\ 0\ 2\ 2.\ 1.$	
6.8034629174	23011425503
1.1201076403	.72103186735
0 0 1 2. 1.	
.48080118839	1.0
0 0 1 0. 1.	
.15 1.0	
$0\ 2\ 6\ 6.\ 1.$	
1063.1474732	.24690839320E-02
251.56507061	.19773345523E-01
80.408554854	.90987976672E-01
29.768193269	.25559900413
11.736830556	.40489386764
4.7142375230	.23693402558
$0\ 2\ 3\ 6.\ 1.$	
17.796803704	27878639615E-01
2.4272698680	.55672914668
.96823445537	1.0055447350
$0\ 2\ 1\ 0.\ 1.$	
.37056694165	1.0
$0\ 3\ 4\ 2.\ 1.$	
37.713384723	.11513835092 E-01
10.692931184	.67246343996 E-01
3.6728446990	.21484207775
1.3588590303	.38890892779
$0\ 3\ 1\ 0.\ 1.$	
.49213295253	.43040835243
$0\ 3\ 1\ 0.\ 1.$	
.16330520653	.23253305465
0 4 1 0. 1.	
.562 1.	

Vanadium

.23072410092E-03
.17888178962E-02
.92992490131E-02
.37761463347E-01
.12255909662
.28963508811
.41004702955

40.064784617	.21113610858
$0\ 0\ 4\ 2.0\ 1.0$	
255.24014968	24458116338E-01
78.804646961	11527205366
12.340598946	.55174749453
5.1742019219	.54504528489
$0\ 0\ 2\ 2.0\ 1.0$	
7.6513894469	22967638286
1.2639759898	.71683769077
$0\ 0\ 1\ 2.0\ 1.0$	
0.53861761721	1.0
$0\ 0\ 1\ 0.0\ 1.0$	
0.27 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.13 1.0	1.0
$0\ 2\ 6\ 6.0\ 1.0$	
1184.2369151	.24449826729E-02
280.23075192	.19643454466 E-01
89.643627137	.90796949190E-01
33.242411253	.25650768222
13.144514452	.40815393750
5.2948534140	.23860378268
$0\ 2\ 3\ 6.0\ 1.0$	
20.175586851	28241489023E-01
2.7605865197	.55574635619
1.1008900902	.99319919270
$0\ 2\ 1\ 0.0\ 1.0$	
0.42013310739	1.0
$0\ 3\ 4\ 3.0\ 1.0$	
43.861134864	.11487174238E-01
12.516021891	.68247153977 E-01
4.3313854957	.21837784195
1.6138855773	.39245212296
$0\ 3\ 1\ 0.0\ 1.0$	
0.65 1.0	
$0\ 3\ 1\ 0.0\ 1.0$	
0.25 1.0	

Chromium

24 12	
$0\ 0\ 8\ 2.0\ 1.0$	
254477.8070400	0.23386945693E-03
38131.7970540	0.18142601800E-02
8675.2930607	0.94363925721 E-02
2455.0099848	0.38343639367 E-01
799.16217787	0.12459194837
286.90021489	0.29489696029

111.25413232	0.41846149607
43.864152636	0.21633763420
$0 \ 0 \ 4 \ 2.0 \ 1.0$	
279.32669173	-0.23450908111E-01
86.274732376	-0.11080370027
13.555756113	0.53028965842
5.6978112751	0.51603516947
$0 \ 0 \ 2 \ 2.0 \ 1.0$	
8.5636582615	-0.38109545675
1.3988296768	1.1991591436
$0 \ 0 \ 1 \ 2.0 \ 1.0$	
0.57288171116	1.0
$0 \ 0 \ 1 \ 0.0 \ 1.0$	
0.29 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.13 1.0 1.0)
$0\ 2\ 6\ 6.0\ 1.0$	
1306.4398864	0.24277326185 E-02
309.25311441	0.19544041017E-01
98.996273963	0.90651794553E-01
36.756916451	0.25699279154
14.566657077	0.40935504891
5.8739937432	0.23729388849
$0\ 2\ 3\ 6.0\ 1.0$	
22.890999695	-0.28166026613E-01
3.0855001822	0.56034120148
1.2132329118	0.98119019650
0 2 1 0.0 1.0	1.0
0.44931680699	1.0
0 3 4 4.0 1.0	
43.720074476	0.13622964026E-01
12.391242652	0.78935180133E-01
4.2639442006	0.23833840000
1.5525221790	0.39526851122
0 3 1 0.0 1.0	1.0
0.53761929485	1.0
U 3 I U.U I.U 0 16409179074	1.0
0.10493173074	1.0

Manganese

$25 \ 12$	
$0\ 0\ 8\ 2.0\ 1.0$	
277185.00153	.22838385133E-03
41550.769890	.17707650375 E-02
9455.9700152	.92077209994 E-02
2676.5206482	.37415971825 E-01
871.46687530	.12164861426

312.98306420	.28824392499
121.44454051	.41041600847
47.922598829	.21372375145
$0 \ 0 \ 4 \ 2.0 \ 1.0$	
303.66723163	24589926140E-01
93.881403187	11602608038
14.879421214	.55112059677
6.2865200745	.53707560756
$0 \ 0 \ 2 \ 2.0 \ 1.0$	
9.4858591337	22889262695
1.5698706158	.71196169587
$0\ 0\ 1\ 2.0\ 1.0$	
0.65903213608	1.0
$0 \ 0 \ 1 \ 0.0 \ 1.0$	
0.30 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.13 1.0	1.0
$0\ 2\ 6\ 6.0\ 1.0$	
1444.7978182	.23994136455 E-02
342.06551197	.19369286864 E-01
109.58400891	.90236108988E-01
40.747988173	.25745467851
16.188626566	.41272351958
6.5484505964	.24087700007
$0\ 2\ 3\ 6.0\ 1.0$	
25.357086437	28707174058E-01
3.4830168782	.55208100712
1.3858800906	.97226901379
$0\ 2\ 1\ 0.0\ 1.0$	
0.52555094893	1.0
$0\ 3\ 4\ 5.0\ 1.0$	
56.563189119	.11543245294532E-01
16.278734711	.70299845987196E-01
5.6964273914	.22450770821295
2.1411147942	.39703065434226
$0\ 3\ 1\ 0.0\ 1.0$	
0.78291801938	1.0
$0\ 3\ 1\ 0.0\ 1.0$	
0.25952311214	1.0

Iron

26 12	
$0\ 0\ 8\ 2.0\ 1.0$	
300784.84637	.22806273096E-03
45088.970557	.17681788761E-02
10262.516317	.91927083490 E-02
2905.2897293	.37355495807 E-01

946.11487137	.12151108426
339.87832894	.28818881468
131.94425588	.41126612677
52.111494077	.21518583573
$0\ 0\ 4\ 2.0\ 1.0$	
329.48839267	24745216477E-01
101.92332739	11683089050
16.240462745	.55293621136
6.8840675801	.53601640182
$0\ 0\ 2\ 2.0\ 1.0$	
10.470693782	22912708577
1.7360039648	.71159319984
$0 \ 0 \ 1 \ 1.0 \ 1.0$	
0.72577288979	1.0
$0 \ 0 \ 1 \ 0.0 \ 1.0$	
0.32 1.0	
0 1 1 0.0 1.0	
0.14 1.0	1.0
$0\ 2\ 6\ 6.0\ 1.0$	
1585.3959970	.23793960179 E-02
375.38006499	.19253154755 E-01
120.31816501	.90021836536E-01
44.788749031	.25798172356
17.829278584	.41492649744
7.2247153786	.24207474784
$0\ 2\ 3\ 6.0\ 1.0$	
28.143219756	29041755152E-01
3.8743241412	.55312260343
1.5410752281	.96771136842
$0\ 2\ 1\ 0.0\ 1.0$	
0.58285615250	1.0
$0\ 3\ 4\ 7.0\ 1.0$	
61.996675034	.11971972255 E-01
17.873732552	.73210135410 E-01
6.2744782934	.23103094314
2.3552337175	.39910706494
$0\ 3\ 1\ 0.0\ 1.0$	
0.85432239901	.40203412228
$0\ 3\ 1\ 0.0\ 1.0$	
0.27869254413	.21415606743

Cobalt

27 12	
$0\ 0\ 8\ 2.0\ 1.0$	
325817.01553	.22568462484E-03
48839.636453	.17499397533E-02
11114.937307	.91003134097E-02

3146.1603642	.36996256837E-01
1024.4378465	.12044269621
368.02508816	.28598731649
142.91229205	.40908312004
56.482649209	.21500145739
$0\ 0\ 4\ 2.0\ 1.0$	
356.40298318	24767059678E-01
110.31165215	11702139134
17.659634834	.55215522200
7.5059030479	.53246877060
$0\ 0\ 2\ 2.0\ 1.0$	
11.501807176	22942470077
1.9081994606	.71180933514
$0\ 0\ 1\ 1.0\ 1.0$	
0.79396696891	1.0
$0\ 0\ 1\ 0.0\ 1.0$	
0.33 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.14 1.0	1.0
$0\ 2\ 6\ 6.0\ 1.0$	
1731.1369144	.23905767685E-02
409.91750438	.19382999967E-01
131.45648578	.90905448509E-01
48.987439714	.26146681577
19.537078992	.42157264570
7.9287281634	.24571813557
$0\ 2\ 3\ 6.0\ 1.0$	
31.076017584	29438069973E-01
4.2835180697	.55615568168
1.7022921563	.96772195064
$0\ 2\ 1\ 0.0\ 1.0$	
0.64202908602	1.0
$0\ 3\ 4\ 8.0\ 1.0$	
68.140745239	.11983845360E-01
19.685241019	.73688540475 E-01
6.9322128825	.23085496779
2.6025125694	.39281059225
$0\ 3\ 1\ 0.0\ 1.0$	
0.94016837302	.40203412228
$0\ 3\ 1\ 0.0\ 1.0$	
0.30381457794	.21415606743

Nickel

28 12	
$0\ 0\ 8\ 2.0\ 1.0$	
351535.72935	.22529386884 E-03
52695.809283	.17468616223E-02

11992.468293	.90849992136E-02
3394.5776689	.36940748447E-01
1105.3594585	.12032819950
397.14677769	.28596715057
154.27542974	.40983020196
61.018723780	.21620642851
$0 \ 0 \ 4 \ 2.0 \ 1.0$	
384.45559739	24651279268E-01
119.04879199	11658505277
19.137012223	.54864126676
8.1526718562	.52640051122
$0 \ 0 \ 2 \ 2.0 \ 1.0$	
12.579408642	22797884293
2.0870866081	.70703738215
$0\ 0\ 1\ 1.0\ 1.0$	
0.86432568555	1.0
$0 \ 0 \ 1 \ 0.0 \ 1.0$	
0.35 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.14 1.0 1.0	
$0\ 2\ 6\ 6.0\ 1.0$	
1883.0907486	.23748258443 E-02
445.95155320	.19289457172E-01
143.08430815	.90718211507E-01
53.372920722	.26181414117
21.321919357	.42309149832
8.6643561994	.24641686015
$0\ 2\ 3\ 6.0\ 1.0$	
34.144255211	29677129163E-01
4.7122455921	.55616824096
1.8709231845	.96357766460
$0\ 2\ 1\ 0.0\ 1.0$	
0.70370016267 1.0)
$0\ 3\ 4\ 9.0\ 1.0$	
74.591603465	.12077454672 E-01
21.590632752	.74637262154 E-01
7.6246142580	.23236775502
2.8632206762	.39042651680
$0\ 3\ 1\ 0.0\ 1.0$	
1.0311063388	.39509498921
$0\ 3\ 1\ 0.0\ 1.0$	
0.33060760691	.21138769167

Copper

29 12	
$0\ 0\ 8\ 2.0\ 1.0$	
377518.79923	0.22811766128E-03

56589.984311	0.17688035931E-02
12878.711706	0.91993460227E-02
3645.3752143	0.37411016434E-01
1187.0072945	0.12189873737
426.46421902	0.28983900714
165.70660164	0.41531872174
65.598942707	0.21905799287
$0\ 0\ 4\ 2.0\ 1.0$	
414.41265811	-0.24682525053E-01
128.32056039	-0.11716827406
20.622089750	0.55301315941
8.7821226045	0.52242718609
$0\ 0\ 2\ 2.0\ 1.0$	
13.741372006	-0.22736061821
2.2431246833	0.71761210873
0 0 1 1.0 1.0	
0.89370549079	1.0
$0\ 0\ 1\ 0.0\ 1.0$	
0.35 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.14 1.0	1.0
$0\ 2\ 6\ 6.0\ 1.0$	
2034.7596692	0.23524822298E-02
481.90468106	0.19134070751E-01
154.67482963	0.90171105278E-01
57.740576969	0.26063284735
23.099052811	0.42093485770
9.3882478591	0.24344615121
$0\ 2\ 3\ 6.0\ 1.0$	
37.596171210	-0.28991094530E-01
5.1240690810	0.54919083831
2.0119996085	0.93793330488
$0\ 2\ 1\ 0.0\ 1.0$	
0.73860686002	1.0
0 3 4 10.0 1.0	
74.129460637	0.14363216676 E-01
21.359842587	0.86628177096E-01
7.4995240537	0.25631430541
9 7601204160	
2.7001394109	0.40374062368
0 3 1 0.0 1.0	0.40374062368
$\begin{array}{c} 2.7001394109\\ 0\ 3\ 1\ 0.0\ 1.0\\ 0.95362061236\end{array}$	0.40374062368 0.39427042447
$\begin{array}{c} 2.7601394109\\ 0\ 3\ 1\ 0.0\ 1.0\\ 0.95362061236\\ 0\ 3\ 1\ 0.0\ 1.0 \end{array}$	0.40374062368 0.39427042447

Zinc

 $\begin{array}{c} 30 \ 12 \\ 0 \ 0 \ 8 \ 2.0 \ 1.0 \end{array}$

405924.31028	.22442017483E-03
60846.955735	.17402086626E-02
13847.343092	.90513339565E-02
3919.6158551	.36817341445E-01
1276.3594167	.12004850256
458.67254435	.28576057621
178.28725246	.41087462062
70.612192837	.21816962456
0 0 4 2.0 1.0	
443.88077950	24934274984E-01
137.55875267	11817955766
22.268083479	.55367318468
9.5217310606	.52628934936
$0\ 0\ 2\ 2.0\ 1.0$	
14.874114065	22929955254
2.4647517612	.71135484742
$0\ 0\ 1\ 2.0\ 1.0$	
1.0113272238	1.0
$0\ 0\ 1\ 0.0\ 1.0$	
0.40 1.0	
$0\ 1\ 1\ 0.0\ 1.0$	
0.16 1.0	1.0
$0\ 2\ 6\ 6.0\ 1.0$	
2205.3508534	.23356240448 E-02
522.35300699	.19031022634E-01
167.73055542	.89955758675E-01
62.670045373	.26113248631
25.109749456	.42348448173
10.225142681	.24618926885
$0\ 2\ 3\ 6.0\ 1.0$	
40.713442521	30029667592E-01
5.6247090696	.55575254864
2.2279949116	.95581013442
$0\ 2\ 1\ 0.0\ 1.0$	
0.83354741691	1.0
0 3 4 10.0 1.0	
88.554315311	.12728170015 E-01
25.721525557	.79394499843E-01
9.1278367624	.24491506805
3.4312364064	.40390526479
$0\ 3\ 1\ 0.0\ 1.0$	
1.2308920645	.40158491145
$0\ 3\ 1\ 0.0\ 1.0$	
0 20021045110	21570805024

References

- [1] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.
- [2] Piela, L. Chasing Correlation Dragon: Density Functional Theory (DFT); Elsevier, 2014; pp 663-717.
- [3] Perdew, J. P. Jacob's ladder of density functional approximations for the exchangecorrelation energy. AIP Conference Proceedings. 2001.
- [4] Becke, A. D. J. Chem. Phys. 2014, 140, 18A301.
- [5] Perdew, J. P. Int. J. Quantum Chem. 2009, 28, 497–523.
- [6] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91.
- [7] Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105, 9982–9985.
- [8] Vogiatzis, K. D.; Polynski, M. V.; Kirkland, J. K.; Townsend, J.; Hashemi, A.; Liu, C.; Pidko, E. A. Chem. Rev. 2018, 119, 2453–2523.
- [9] Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
- [10] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys 1980, 58, 1200-1211.
- [11] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
- [12] Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244–13249.
- [13] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158-6170.
- [14] Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622–5629.
- [15] Linnera, J.; Sansone, G.; Maschio, L.; Karttunen, A. J. J. Phys. Chem. C 2018, 122, 15180–15189.
- [16] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215–241.
- [17] Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207-8215.
- [18] Liu, J. F.; Yin, S.; Wu, H. P.; Zeng, Y. W.; Hu, X. R.; Wang, Y. W.; Lv, G. L.; Jiang, J. Z. J. Phys. Chem. B 2006, 110, 21588–21592.
- [19] Sawada, H. Mater. Res. Bull. **1994**, 29, 239–245.
- [20] Asbrink, S.; Waskowska, A. J. Condens. Matter Phys. 1991, 3, 8173–8180.
- [21] Pailhé, N.; Wattiaux, A.; Gaudon, M.; Demourgues, A. J. Solid State Chem. 2008, 181, 2697–2704.
- [22] Sasaki, S.; Fujino, K.; Takéuchi, Y. Proceedings of the Japan Academy, Series B 1979, 55, 43–48.
- [23] Robinson, W. R. Acta crystallogr., B Struct. Crystallogr. Cryst. Chem. 1975, 31, 1153–1160.
- [24] Kirfel, A.; Eichhorn, K. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 271–284.

- [25] Abrahams, S. C.; Bernstein, J. L. J. Chem. Phys. 1971, 55, 3206-3211.
- [26] Shklover, V.; Haibach, T.; Ried, F.; Nesper, R.; Novák, P. J. Solid State Chem. 1996, 123, 317–323.
- [27] Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B. Crystallogr. Rep. 2013, 58, 226–233.
- [28] Madelung, O. Semiconductors: Data Handbook; Springer Berlin Heidelberg, 2004.
- [29] Guha, S.; Peebles, D.; Wieting, T. J. Phys. Rev. B 1991, 43, 13092–13101.
- [30] Kliche, G.; Popovic, Z. V. Phys. Rev. B 1990, 42, 10060–10066.
- [31] Sander, T.; Reindl, C. T.; Giar, M.; Eifert, B.; Heinemann, M.; Heiliger, C.; Klar, P. J. Phys. Rev. B 2014, 90.
- [32] Sanson, A. Solid State Commun. 2011, 151, 1452–1454.
- [33] Damen, T. C.; Porto, S. P. S.; Tell, B. Phys. Rev. 1966, 142, 570-574.
- [34] Venger, E. F.; Melnichuk, A. V.; Melnichuk, L. Y.; Pasechnik, Y. A. Phys. Stat. Sol. B 1995, 188, 823–831.
- [35] Ashkenov, N.; Mbenkum, B. N.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, D.; Kaidashev, E. M.; Kasic, A.; Schubert, M.; Grundmann, M.; Wagner, G.; Neumann, H.; Darakchieva, V.; Arwin, H.; Monemar, B. J. Appl. Phys. 2003, 93, 126–133.
- [36] Kushwaha, M. S. Physica B+C 1982, 112, 232–236.
- [37] Wdowik, U. D.; Legut, D. 2009, 21, 275402.
- [38] Plendl, J.; Mansur, L.; Mitra, S.; Chang, I. **1969**, *7*, 109–111.
- [39] Sakurai, J.; Buyers, W. J. L.; Cowley, R. A.; Dolling, G. Phys. Rev. 1968, 167, 510–518.
- [40] Reichardt, W.; Wagner, V.; Kress, W. 1975, 8, 3955–3962.
- [41] Merle, P.; Pascual, J.; Camassel, J.; Mathieu, H. Phys. Rev. B 1980, 21, 1617–1626.
- [42] Guillamet, R.; Lenglet, M.; Adam, F. Solid State Commun. 1992, 81, 633–637.
- [43] Hayashi, S.; Kanamori, H. J. Phys. C: Solid State Phys. 1980, 13, 1529–1538.
- [44] Onari, S.; Arai, T.; Kudo, K. Phys. Rev. B 1977, 16, 1717–1721.
- [45] Kuroda, N.; Fan, H. Y. Phys. Rev. B 1977, 16, 5003-5008.
- [46] Madelung, O., Rössler, U., Schulz, M., Eds. Non-Tetrahedrally Bonded Binary Compounds II; Springer-Verlag, 2000.
- [47] Bhandari, C.; Lambrecht, W. R. L. Phys. Rev. B 2014, 89.
- [48] Parmigiani, F.; Sangaletti, L. J. Electron Spectrosc. Relat. Phenom. 1999, 98-99, 287–302.
- [49] Chou, H.; Fan, H. Y. Phys. Rev. B 1974, 10, 901–910.
- [50] Kurmaev, E. Z.; Wilks, R. G.; Moewes, A.; Finkelstein, L. D.; Shamin, S. N.; Kuneš, J. Phys. Rev. B 2008, 77.

- [51] Heinemann, M.; Eifert, B.; Heiliger, C. Phys. Rev. B 2013, 87.
- [52] Marabelli, F.; Parravicini, G. B.; Salghetti-Drioli, F. Phys. Rev. B 1995, 52, 1433–1436.
- [53] Baumeister, P. W. Phys. Rev. 1961, 121, 359-362.
- [54] Cheng, C.-S.; Gomi, H.; Sakata, H. Phys. Status Solid A 1996, 155, 417–425.
- [55] Crawford, J. A.; Vest, R. W. J. App. Phys. 1964, 35, 2413–2418.
- [56] Marusak, L.; Messier, R.; White, W. B. J. Phys. Chem. Solids. 1980, 41, 981–984.
- [57] Huffman, D. R.; Wild, R. L.; Shinmei, M. J. Chem. Phys. 1969, 50, 4092–4094.
- [58] Fujimori, A.; Minami, F. Phys. Rev. B 1984, 30, 957–971.
- [59] Strehlow, W. H.; Cook, E. L. J. Phys. Chem. Ref. Data 1973, 2, 163-200.
- [60] Tashtoush, N. M.; Sheiab, A.; Jafar, M.; Momani, S. Int. J. Phys. Stud. Res. 2019, 2, 59–64.
- [61] Haynes, W. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data; CRC Press: Boca Raton, Florida, 2017.
- [62] Kuklin, M. S.; Karttunen, A. J. **2018**, *122*, 24949–24957.
- [63] Roth, W. L. Phys. Rev. 1958, 110, 1333–1341.
- [64] Dobin, A. Y.; Duan, W.; Wentzcovitch, R. M. Phys. Rev. B 2000, 62, 11997–12000.
- [65] Coey, J. M. D.; Sawatzky, G. A. 1971, 4, 2386-2407.
- [66] Oguchi, T.; Terakura, K.; Williams, A. R. Phys. Rev. B 1983, 28, 6443–6452.
- [67] Tenailleau, C.; Suard, E.; Rodriguez-Carvajal, J.; Lacorre, P. J. Magn. Magn. Mater. 2004, 278, 57–67.
- [68] Goodenough, J. B. Chem. Mater. 2013, 26, 820–829.
- [69] Linnera, J.; Karttunen, A. J. Phys. Rev. B 2019, 100.
- [70] Kuz'menko, A. B.; van der Marel, D.; van Bentum, P. J. M.; Tishchenko, E. A.; Presura, C.; Bush, A. A. Phys. Rev. B 2001, 63.
- [71] Lucovsky, G.; Sladek, R. J.; Allen, J. W. Phys. Rev. B 1977, 16, 4716–4718.
- [72] Heltemes, E. C.; Swinney, H. L. J. App. Phys. 1967, 38, 2387–2388.
- [73] Xu, Y.-N.; Ching, W. Y. Phys. Rev. B 1993, 48, 4335–4351.
- [74] Massidda, S.; Resta, R.; Posternak, M.; Baldereschi, A. Phys. Rev. B 1995, 52, R16977– R16980.
- [75] Bertoni, C. M.; Cappellini, G.; Finocchi, F.; Monachesi, P. The surfaces of metal dioxides: TiO₂ and SnO₂; Springer Berlin Heidelberg, 2015; pp 404–410.
- [76] Titanium oxide (TiO2): dielectric constants in rutile: Datasheet from Landolt-Börnstein -Group III Condensed Matter.

- [77] Anthony, J. Handbook of Mineralogy; Mineral Data Pub: Tucson, Ariz, 1990; Vol. 3.
- [78] Dhineshbabu, N. R.; Rajendran, V.; Nithyavathy, N.; Vetumperumal, R. Appl. Nanosci 2015, 6, 933–939.
- [79] Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, 2003.
- [80] Abdel-Rahman, M.; Bahidra, E.; Abas, A. F. Materials 2020, 13, 2002.
- [81] Deer, W. A. An Introduction to the Rock-Forming Minerals; The Mineralogical Society: London, 2013.
- [82] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [83] Karttunen, A. J.; Tynell, T.; Karppinen, M. J. Phys. Chem. C 2015, 119, 13105–13114.
- [84] Linnera, J.; Karttunen, A. J. Phys. Rev. B 2017, 96.
- [85] Glebko, N.; Aleksandrova, I.; Tewari, G. C.; Tripathi, T. S.; Karppinen, M.; Karttunen, A. J. J. Phys. Chem. C 2018, 122, 26835–26844.
- [86] Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. J. Chem. Inf. Model. 2019, 59, 4814–4820.
- [87] Oliveira, D. V.; Laun, J.; Peintinger, M. F.; Bredow, T. J. Comp. Chem. 2019, 40, 2364– 2376.