SUPPLEMENRARY INFORMATION

Adsorption Characteristics of Peptides on the ω-Functionalized Self-assembled Monolayers: A Molecular Dynamics Study

Hari O. S. Yadav,¹ An-Tsung Kuo,² Shingo Urata,³ Kosuke Funahashi,⁴ Yutaka Imamura,⁴ and Wataru Shinoda^{1,5,6*}

¹ Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan

² Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan

³ Planning Division, AGC Inc., Yokohama 230-0045, Japan

⁴ Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan

⁵ Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530,

Japan

⁶ Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530,

Japan

* Email: shinoda@okayama-u.ac.jp

Table S1. Initial configuration parameters for SCA adsorption on different SAMs, where l_x and l_y are the simulation box lengths in x and y directions, respectively.

<i>l_x</i> (nm)	$l_y(nm)$	No. of SAM chains	No. of water molecules
3.500	3.464	56	1400 - 1600

Table S2. Initial configuration parameters for β -hairpin (HP7) peptide adsorption on different SAMs.

<i>l_x</i> (nm)	$l_y(nm)$	No. of SAM chains	No. of water molecules
5.500	5.196	132	4500 - 5000

Figure S1. (a) Umbrella histograms and (b) adsorption free energy, V_{PMF} , as a function of distance, z_{cm} , at different simulation lengths for the value (VAL) side chain on the PFA SAM, where z_{cm} denotes the z-distance between the centers of mass of PFA SAM and VAL side chain.

Figure S2. V_{PMFs} of SCAs as a function of z_{cm} -distance on (a) PHEA, (b) PMEA, (c) PBA, and (d) PFA SAM surfaces.

Figure S3. Adsorption free energy, V_{PMF}° , of SCAs at equilibrium pair separation as a function of SCAs. The data is arranged based on the increasing magnitude of V_{PMF}° on the PFA SAM surface.

Figure S4. Correlation of the adsorption free energy of SCAs, V_{PMF}° , on the PFA SAM surface with previous experimental hydrophobicity scales, λ , based on the (a) transmembrane tendency^{S1} and (b) transfer free energy of peptides at the membrane interfaces.^{S2} The SCAs are shown in the plots with their traditional one letter symbols.

Figure S5. V_{PMF} profile of the HP7 peptide on the four different ω -functionalized SAM surfaces.

Figure S6. Solvent accessible surface area (SASA) (left panels) and water coordination number, n_w , (right panels) of the (a) SAMs and (b) HP7 peptide.

Figure S7. Number of hydrogen bonds, n_{HB} , between the PHEA SAM surface and water (blue line), between the OH groups of PHEA (green line), and between the ester group of PHEA and water as a function of time

Figure S8. Z-density distribution, ρ , of SAM, HP7, and water along the surface normal, z.

REFERENCES

- (S1) Zhao, G.; London, E. An Amino Acid "Transmembrane Tendency" Scale That Approaches the Theoretical Limit to Accuracy for Prediction of Transmembrane Helices: Relationship to Biological Hydrophobicity. *Protein Sci* 2006, 15 (8), 1987–2001.
- (S2) Wimley, W. C.; White, S. H. Experimentally Determined Hydrophobicity Scale for Proteins at Membrane Interfaces. *Nat Struc Mol Biol* **1996**, *3* (10), 842–848.