Electronic Supplementary Material (ESI)

A new direct band gap Si-Ge allotrope with advanced electronic and

optical properties

Hong Shen^a, Riyi Yang^a, Jian Zhou^a, Zhiyuan Yu^a, Ming Lu^a, Yuxiang Zheng^a, Rongjun Zhang^a, Liangyao Chen^a, Wan-Sheng Su^{b,c,d,*}, and Songyou Wang^{a,e,f,*}

^aShanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
^bNational Taiwan Science Education Center, Taipei 11165, Taiwan.
^cDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
^dDepartment of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan
^eKey Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai 200433, China
^fYiwu Research Institution of Fudan University, Yiwu 322000, China

*Email: wssu@mail.ntsec.gov.tw; songyouwang@fudan.edu.cn

Supporting Information

Figure S1 Spatial dependence of Young's modulus and shear modulus in α phase (in GPa). (a) Young's modulus in xy-plane, (b) xz-plane, and (c) yz-plane. (d) Shear modulus in xy-plane, (e) xz-plane, and (f) yz-plane.

Figure S2 Spatial dependence of Young's modulus and shear modulus of β phase (in GPa). (a) Young's modulus in xy-plane, (b) xz-plane, and (c) yz-plane. (d) Shear modulus in xy-plane, (e) xz-plane, and (f) yz-plane.

Figure S3 Spatial dependence of Young's modulus and shear modulus of γ phase (in GPa). (a) Young's modulus in xy-plane, (b) xz-plane, and (c) yz-plane. (d) Shear modulus in xy-plane, (e) xz-plane, and (f) yz-plane.

Figure S4 Calculated mobility of α phase under different temperatures and doping conditions, considering acoustic deformation potential (ADP) scattering (green line) and ionized impurity (IMP) scattering (red line). The black line represents the total carrier mobility.

Figure S5 Carrier mobility of β phase under different temperatures and doping conditions, considering acoustic deformation potential (ADP) scattering (green line) and ionized impurity (IMP) scattering (red line). The black line represents the total carrier mobility.

Figure S6 Carrier mobility of γ phase under different temperature and doping conditions, considering acoustic deformation potential (ADP) scattering (green line) and ionized impurity (IMP) scattering (red line). The black line represents the total carrier mobility.

Chemical	Space	Total	Band	Character	Formation Energy
Formula	group No.	Energy (eV)	Gap (eV)		(eV/atom)
Si ₁ Ge ₄	1	-45.67	0.06	Indirect	0.13(5)
Si ₂ Ge ₃	1	-48.48	0.28	Indirect	0.03(7)
	1	-47.94	0.80	Indirect	0.09(1)
	1	-47.86	0.85	Indirect	0.09(9)
	1	-47.78	0.21	Indirect	0.10(7)
	1	-47.75	0.18	Indirect	0.10(9)
Si ₃ Ge ₂	8	-50.45	0.57	Indirect	0.02(2)
	160	-50.43	0.53	Indirect	0.02(4)
	8	-50.42	0.70	Indirect	0.02(5)
	44	-50.42	0.49	Direct	0.02(5)
	8	-50.41	0.63	Indirect	0.02(6)
	44	-50.36	0.17	Direct	0.03(1)
Si ₄ Ge ₁	12	-51.76	0.54	Indirect	0.07(4)
	1	-51.63	0.95	Indirect	0.08(7)
	1	-51.59	0.79	Indirect	0.09(0)
	6	-51.56	0.64	Indirect	0.09(3)
	1	-51.51	0.94	Indirect	0.09(9)
	69	-102.86	0.77	Direct	0.10(6)

Table S1 Selected structures and their basic properties found in this work