## **Supporting Information**

## Reaction mechanism of aluminum nanoparticles in explosives under high temperature and high pressure by shock loading

Kun Yang, Lang Chen\*, Jianying Lu, Deshen Geng, Junying Wu

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China

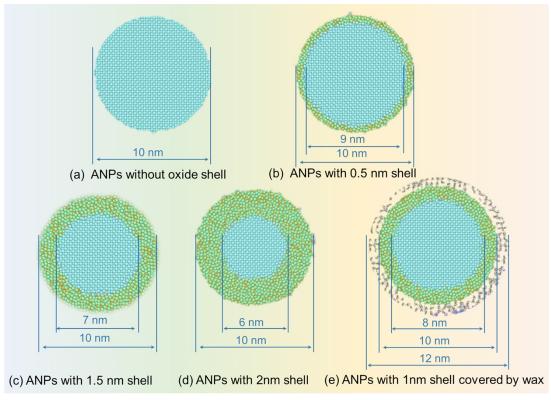



Figure S1 ANPs without an oxide shell, with 0.5-nm, 1.5-nm, and 2-nm oxide shells, and with a 1-nm oxide shell covered by wax.

Table S1 Pressures at which the supercell was compressed to the maximum state under shock loading at various velocities.

| Velocity            | Pressure/GPa |          |          |          |                  |
|---------------------|--------------|----------|----------|----------|------------------|
| $/(m \cdot s^{-1})$ | 0.5-nm       | 1-nm     | 1.5-nm   | 2.5-nm   | Average Pressure |
| 1000                | 12.88335     | 12.08772 | 12.40477 | 12.44085 | 12.45417         |
| 1500                | 20.22598     | 19.72184 | 20.22808 | 20.12653 | 20.07561         |
| 2000                | 29.21973     | 29.38643 | 31.6445  | 31.32196 | 30.39315         |
| 2500                | 42.36073     | 42.25341 | 44.90553 | 44.15776 | 43.41936         |
| 3000                | 55.64892     | 56.22771 | 59.25028 | 60.40227 | 57.88229         |