Investigation on the photoinduced chemical reaction between pbenzoquinone and tryptophan in homogeneous solution

Cheng Yang^a, Jiangxue Yang^a, Xianling Gong^a, Yaxiong Wei^{*a, b}, Xinsheng Xu^{*a, b}

^a School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.

^b Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Wuhu 241002, China.

[†]Authors to whom correspondence should be addressed.

E-mail: davidl@mail.ustc.edu.cn (Y. Wei)

xxsheng@mail.ahnu.edu.cn (X. Xu)

Contents

1. The instrument structure of time-resolved electron paramagnetic resonance	3
2. EPR spectral lines	3
3. The theoretical calculation results	6
4. The bimolecular quenching rate constant	9

1. The instrument structure of time-resolved electron paramagnetic resonance

Figure S1. Composition of time-resolved electron paramagnetic resonance.

2. EPR spectral lines

Figure S2. The structures of PBQ+H[•] and PBQ^{•-}.

For 1,4-benzosemiquinone radical (PBQ+H[•]), only one unpaired electron and $I = \frac{1}{2}$. two groups equivalent nuclei ($I = \frac{1}{2}$). Under the strong external magnetic field, the contribution of nuclear Zeeman term may be ignored, the Hamiltonian of the first-order approximation is

$$\hat{H} = g\beta H\hat{S}_z + \hat{S}_z \left(a_\alpha \hat{I}_{1z} + a_\alpha \hat{I}_{2z} + a_\beta \hat{I}_z\right)$$
(1)

$$= \langle M_{S}, M_{I1}^{(\alpha)}, M_{I2}^{(\alpha)}, M_{I}^{(\beta)} | \hat{H} | M_{S}, M_{I1}^{(\alpha)}, M_{I2}^{(\alpha)}, M_{I}^{(\beta)} \rangle = g\beta HM_{S} + M_{S} (a_{\alpha}M_{I1}^{(\alpha)} + a_{\alpha}M_{\beta})$$
$$\equiv g\beta HM_{S} + M_{S} (a_{\alpha}M_{\alpha} + a_{\beta}M_{\beta})$$
(2)

Where the M_{α} and M_{β} are: $M_{\alpha} = M_{I1}^{(\alpha)} + M_{I2}^{(\alpha)}, M_{\beta} = M_{I}^{(\beta)}$, and the selection rule is $\Delta M_{S} = 1$, $\Delta M_{I1}^{(\alpha)} = 0$, $\Delta M_{I2}^{(\alpha)} = 0$, $\Delta M_{I}^{(\beta)} = 0$. Add the microwave of v, equation (2) can be expressed as:

$$h\nu = \Delta E = g\beta H + [a_{\alpha} (M_{11}^{(\alpha)} + M_{12}^{(\alpha)}) + a_{\beta} M_{I}^{(\beta)}]$$
(3)

make $\frac{h\nu}{g\beta} \equiv H_0$, $\frac{a_{\alpha}}{g\beta} \rightarrow a_{\alpha}$, $\frac{a_{\beta}}{g\beta} \rightarrow a_{\beta}$, equation (3) can be simplified to

$$H = H_0 - \left[a'_{\alpha} \left(M^{(\alpha)}_{I1} + M^{(\alpha)}_{I2}\right) + a'_{\beta} M^{(\beta)}_{I}\right]$$
(4)

Moreover, the $M_{I1}^{(\alpha)} + M_{I2}^{(\alpha)}$ can be taken as 1, 0, -1, and $M_{I1}^{(\beta)}$ is $\frac{1}{2}$ or $-\frac{1}{2}$, we can get $3 \times 2 = 6$ spectral lines. The $\left(M_{I1}^{(\alpha)} = +\frac{1}{2}M_{I2}^{(\alpha)} = +\frac{1}{2}M_{I2}^{(\beta)} = +\frac{1}{2}\right)$ can be expressed as (+, +, +), and the resonant magnetic field of these six spectral lines can be expressed as:

)

$$H_{1} = H_{0} - a_{\alpha}' - \frac{1}{2}a_{\beta}' + (+, +, +)$$

$$H_{2} = H_{0} - a_{\alpha}' + \frac{1}{2}a_{\beta}' + (+, +, -)$$

$$H_{3} = H_{0} - \frac{1}{2}a_{\beta}' + (+, -, +), (-, +, +)$$

$$H_{4} = H_{0} + \frac{1}{2}a_{\beta}' + (+, -, -)(-, +, -)$$

$$H_{5} = H_{0} + a_{\alpha}' - \frac{1}{2}a_{\beta}' + (-, -, +)$$

Ε

$$H_6 = H_0 + a'_{\alpha} + \frac{1}{2}a'_{\beta} + (-, -, -)$$

In summary, the intensity ratio of six spectral lines is 1: 1: 2: 2: 1: 1.

Figure S3. (a) Energy levels and allowable transitions of PBQ+H[•] in the fixed microwave frequency. (b) Stick spectrum of PBQ+H[•] in the fixed microwave frequency.

For PBQ \cdot , one unpaired electron and four equivalent nuclei $\left(I = \frac{1}{2}\right)$:

$$\hat{H} = g\beta H\hat{S}_z + \hat{S}_z \sum_{i=1}^4 a_i \hat{I}_{iz}$$
(5)

The eigenfunction is $|M_{s}, M_{I1}, M_{I2}, M_{I3}, M_{I4}\rangle$, that $M_{s}, M_{I1}, M_{I2}, M_{I3}, M_{I4}$ may be 1

selected to $\pm \frac{1}{2}$. And the energy of PBQ⁻ is:

$$E(M_{s}, M_{I1}, M_{I2}, M_{I3}, M_{I4})$$

= $\langle M_{s}, M_{I1}, M_{I2}, M_{I3}, M_{I4} | \hat{H} | M_{s}, M_{I1}, M_{I2}, M_{I3}, M_{I4} \rangle = g\beta H M_{s} + M_{s} \left(\sum_{i=1}^{4} a_{i} M_{Ii} \right)_{(6)}$

Based on the conservation law of angular momentum, the selection rule is $\Delta M_S = 1$, $\Delta M_{Ii} = 0$ (i = 1,2,3,4). Thus:

$$\Delta E = g\beta H + \sum_{i=1}^{4} a_i M_{Ii} \tag{7}$$

According to the resonance condition under the microwave of v: $hv = \Delta E$, the equation (7) can be expressed as:

$$hv = g\beta H + \sum_{i=1}^{4} a_i M_{Ii} \quad H = \frac{hv}{g\beta} - \sum_{i=1}^{4} \frac{a_i}{g\beta} M_{Ii}$$
(8)

make $\frac{h\nu}{g\beta} \equiv H_0$, $\frac{a_i}{g\beta} \rightarrow a'_i$, equation (8) can be expressed as:

$$H = H_0 - \sum_{i=1}^{4} a_i M_{Ii}$$
(9)

The unpaired electron and four protons on the benzene unit are the equivalent

coupling. Thus, $a'_1 = a'_2 = a'_3 = a'_4 = a$, and $H = H_0 - a \sum_{i=1}^4 M_{Ii} \sum_{i=1}^4 M_{Ii}$ can be taken as 2, 1, 0, -1, -2, and the $\left(M_{I1} = +\frac{1}{2}M_{I2} = +\frac{1}{2}M_{I3} = +\frac{1}{2}M_{I4} = +\frac{1}{2}\right)$ can be expressed as (+, +, +, +), the resonant magnetic field of these five spectral lines can be expressed as:

$$H_{1} = H_{0} - 2a_{:}(+, +, +, +, +)$$

$$H_{2} = H_{0} - a_{:}(-, +, +, +)(+, -, +, +)(+, +, -, +)(+, +, +, -)$$

$$H_{3} = H_{0:}(-, -, +, +)(-, +, -, +)(-, +, +, -)(+, -, -, +)(+, -, +, -)(+, +, -, -)$$

$$H_{4} = H_{0} + a_{:}(+, -, -, -)(-, +, -, -)(-, -, +, -)(-, -, -, +)$$

$$H_{5} = H_{0} + 2a_{:}(-, -, -, -)$$

In summary, the line distance between two adjacent spectral lines is a, and the intensity ratio is 1: 4: 6: 4: 1.

Figure S4. (a) Energy levels and allowable transitions of PBQ⁻ in the fixed microwave frequency. (b) Stick spectrum of PBQ⁻ in the fixed microwave frequency.

3. The theoretical calculation results.

Figure S5. The PET from Trp to PBQ.

Figure S6. (a) Nansecond transient absorption spectra of PBQ and Trp in EG/H₂O solution. (b) The triplet-triplet transition absorption states $(T_1 \rightarrow T_n)$ of ³PBQ*, PBQ⁻, PBQ+H[•], Trp-H[•] and Trp⁺ by DFT and TDDFT calculations.

Trp•+		Trp-H•		PBQ+H•		PBQ*-		³ PBQ*	
Energy / nm	f	Energy / nm	f	Energy / nm	f	Energy / nm	f	Energy / nm	f
1048.28	0.0003	893.91	0.0002	460.52	0.0011	405.92	0.0774	434.53	0.0001
989.96	0.0106	569.29	0.0009	373.23	0.0666	377.4	0.0594	378.23	0.0467
537.82	0.0856	509.42	0.0103	308.9	0.0587	285.98	0.0795	326.31	0.0227
420.21	0.0001	453.93	0.0548					318.19	0.0123
346.77	0.0002	328.08	0.0096						
336.57	0.0088	307.07	0.0352						
313.38	0.0747								

Table S1. Theoretical calculation results of triplet-triplet transition absorption states $(T_1 \rightarrow T_n)$.

4. The bimolecular quenching rate constant

Figure S7. Decay kinetic curves of ³PBQ* measured at 410 nm with different concentrations of Trp. (a) 0 mM, (b) 0.5 mM, (c) 1.0 mM, (d) 1.5 mM, (e) 2.0 mM, (f) 2.5 mM.

Figure S8. The decay kinetic curves of ³PBQ* at 410 nm was obtained by global fitting.