Supporting Information for

GaN/MgI₂ van der Waals heterostructure: a two-factor tunable photocatalyst for hydrogen evolution

Hua Zhu¹, Yang Shen^{1, *}, Qianglong Fang¹, Xiaodong Yang^{2,*},

Liang Chen^{1, **}, and Shiqing Xu¹

¹ Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, China

² Key Laboratory of Ecophysics and Department of Physics, Shihezi University, Xinjiang 832003,

China

*Corresponding authors: Y. Shen (<u>yshen@cjlu.edu.cn</u>), X.D. Yang (<u>yangxiaodong1209@hotmail.com</u>) and L. Chen (<u>lchen@cjlu.edu.cn</u>).

S1. Convergence test of k-point mesh

Figure S1. Total energies (E_{tot}) of (a) pristine MgI₂ monolayer, (b) MgI₂/Ga-GaN heterostructure, and (c) MgI₂/N-GaN heterostructure with different k-point mesh N (i.e., N×N×1).

S2. Band structures of hydrogenated GaN nanosheets

Figure S2. Band structure of (a) monolayer, (b) bilayer, (c) trilayer, and(d) tetralayer GaN nanosheets obtained using the HSE06 functional.

S3. the different stacking patten of GaN/MgI_2

Figure S3. The different stacking patten of MgI_2/Ga -GaN heterostructures with the thickness of GaN layer in (a) monolayer, (b) bilayer, (c) trilayer and(d) tetralayer.

Figure S4. the different stacking patten of MgI_2/N -GaN heterostructures with the thickness of GaN layer in (a) monolayer, (b) bilayer, (c) trilayer and(d) tetralayer.

Figure S5. Electrostatic potential distribution (V) of MgI₂/Ga-GaN heterostructures with the thickness of GaN layer in (a) monolayer, (b) bilayer, (c) trilayer and(d) tetralayer. ΔV is the electrostatic potential difference between two terminations of the heterostructures.

Figure S6. Electrostatic potential distribution (V) of MgI₂/N-GaN heterostructures with the thickness of GaN layer in (a) monolayer, (b) bilayer, (c) trilayer and(d) tetralayer. ΔV is the electrostatic potential difference between two terminations of the heterostructure.

S5. The charge-density isosurface distributions of CBM and VBM states of MgI₂/GaN heterostructures

Figure S7. Projected band structure of N-GaN/MgI₂ heterostructures with the different GaN layers in (a) 1L, (b) 2L, (c) 3L, and (d) 4L. MgI₂ and GaN contributions to the heterostructures are represented by the red and blue balls, separately. The dashed lines indicate the Fermi level. CBM and VBM charge-density isosurfaces in 2D MgI₂/N-GaN heterostructures with GaN layer thickness in (e) 1L, (f) 2L, (g) 3L, and (h) 4L.

S6. Calculation of projected energy bands of deformed MgI_2 -GaN heterojunctions by HSE method

Figure S8. (a-c) Electronic band structures of 3L-Ga-GaN/MgI₂ under the effect of tensile strain, and(d-f) band structures due to compressive strain. Dashed black lines set to zero represent Fermi level.