Supporting Information

Composition Control of Alloy Nanoparticles Consisting of Bulk-Immiscible Au and Rh Metals via an Ionic Liquid/Metal Sputtering Technique for Improving Their Electrocatalytic Activity

Kazutaka Akiyoshi,^a Yumezo Watanabe,^a Tatsuya Kameyama,^a Tokuhisa Kawawaki,^{b,c} Yuichi Negishi,^{b,c}, Susumu Kuwabata,^d and Tsukasa Torimoto^{*a}

^a Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. E-mail: torimoto@apchem.nagoya-u.ac.jp

^b Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

^c Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

^d Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

E-mail: torimoto@chembio.nagoya-u.ac.jp

Figure S1. TEM images of sputter-deposited Au, AuRh, and Rh NPs. The samples were Au NPs ($f_{Au} = 1.0$) (a), AuRh NPs ($f_{Au} = 0.75$) (b), ($f_{Au} = 0.50$) (c), ($f_{Au} = 0.25$) (d), ($f_{Au} = 0.13$) (e), ($f_{Au} = 0.08$) (f), ($f_{Au} = 0.04$) (g), ($f_{Au} = 0.03$) (h), and Rh NPs ($f_{Au} = 0$) (i).

Figure S2. TEM images of Au/CB, AuRh/CB, and Rh/CB catalysts. The samples were Au/CB $(f_{Au} = 1.0)$ (a), Au₉₉Rh₁/CB $(f_{Au} = 0.75)$ (b), Au₉₁Rh₉/CB $(f_{Au} = 0.50)$ (c), Au₇₃Rh₂₇/CB $(f_{Au} = 0.25)$ (d), Au₅₉Rh₄₁/CB $(f_{Au} = 0.13)$ (e), Au₄₄Rh₅₆/CB $(f_{Au} = 0.08)$ (f), Au₂₇Rh₇₃/CB $(f_{Au} = 0.04)$ (g), Au₂₃Rh₇₇/CB $(f_{Au} = 0.03)$ (h), and Rh/CB $(f_{Au} = 0)$ (i).

Sample	Peak position of 111 diffraction [degree]	FWHM [degree]	Crystalline size [nm]	NP size from TEM [nm] ^a
Au/CB	38.19	0.174	50.6	8.8
Au99Rh1/CB	38.20	0.302	29.1	6.3
Au91Rh9/CB	38.60	0.705	12.5	3.2
Au ₇₃ Rh ₂₇ /CB	39.00	2.95	2.98	2.6
Au ₅₉ Rh ₄₁ /CB	39.25	3.84	2.30	2.2
Au44Rh56/CB	39.67	3.75	2.35	2.4
Au ₂₇ Rh ₇₃ /CB	39.72	4.21	2.10	2.3
Au ₂₃ Rh ₇₇ /CB	40.28	5.12	1.73	2.2
Rh/CB	41.41	5.35	1.66	1.9

Table S1. Crystalline sizes of AuRh NPs loaded on CB particles, determined from the widths of 111 diffraction peaks in XRD patterns with use of Scherrer's equation.

^{*a*}The data were the same in Fig. 3h.

Figure S3. An XRD pattern of Au₅₉Rh₄₁/CB catalyst in a wide range of diffraction angle. The result is the same as shown in Fig. 4a. Standard diffraction patterns of Au, Rh, AuF₃, and RhF₃ (PDF file# 00-004-0784, 00-005-0685, 01-085-2315, and 01-078-1122, respectively) are also shown.

Figure S4. XPS spectra for (a) Au 4f of Au/CB and (b) Rh 3d of Rh/CB. The obtained spectra showed no signals of metal fluorides, which showed Au $4f_{5/2}$ and $4f_{7/2}$ peaks at 89.9 eV and 86.0 eV, respectively, for AuF_x and Rh $3d_{3/2}$ and $3d_{5/2}$ peaks at 315.5 eV and 310.2 eV, respectively, for RhF_x.^{S1}

Figure S5. Fourier-transformed extended X-ray absorption fine structures (FT-EXAFS) spectra and k^3 -weighted EXAFS oscillation at the Au L₃-edge (a, c) and the Rh K-edge (b, d) of Au/CB, Au₇₅Rh₂₅/CB, Au₄₅Rh₅₅/CB, Au₂₁Rh₇₉/CB, and Rh/CB in reference to the standard Au foil, Rh foil and Rh₂O₃.

sample	bond	C. N. ^{<i>a</i>}	C. N. sum	R (Å)	D. W. ^{<i>b</i>}	R factor (%) c
Au foil	Au-Au	11.5 (3)	11.5	2.85 (2)	0.091 (15)	8.5
Au/CB	Au-Au	9.4 (3)	9.4	2.85 (2)	0.088 (16)	10.1
Au ₇₅ Rh ₂₅ /CB	Au-Au	8.2 (3)	8.8	2.82 (3)	0.096 (19)	7.3
	Au-Rh	0.6 (2)		2.79 (6)	0.087 (47)	
Au45Rh55/CB	Au-Au	5.9 (3)	7.6	2.82 (3)	0.087 (19)	8.8
	Au-Rh	1.7 (2)		2.80 (4)	0.085 (27)	
Au ₂₁ Rh ₇₉ /CB	Au-Au	2.5 (3)	7.6	2.83 (4)	0.085 (29)	12.6
	Au-Rh	5.1 (3)		2.78 (3)	0.105 (21)	
Rh foil	Rh-Rh	11.0(1)	11.0	2.69 (1)	0.064 (77)	12.3
Rh ₂ O ₃	Rh-Rh	1.8 (1)	6.0	2.82 (2)	0.022 (23)	13.5
	Rh-O	4.2 (2)		2.04 (2)	0.040 (23)	
Rh/CB	Rh-Rh	5.3 (2)	6.9	2.68 (2)	0.084 (14)	13.0
	Rh-O	1.6 (3)		2.06 (8)	0.110 (55)	

Table S2. Results of the curve-fitting analysis for Au L₃-edge and Rh K-edge FT-EXAFS.

The numbers in parentheses are the uncertainties, for example, 9.4 (3) represents 9.4 ± 0.3 .

^{*a*} Coordination number.

^b Debye–Waller factor.

^c R factor = $\left(\sum \left(k^3 X^{exp}(k) - k^3 X^{fit}(k) \right)^2 \right)^{1/2} / \left(\sum \left(k^3 X^{exp}(k) \right)^2 \right)^{1/2}$.

For smaller sized metal nanoparticles, the amplitude of the M-M bond was decreased due to the large effect of thermal fluctuation, resulting in a relatively large R factor, as previously reported for small metal clusters in the literature (Yamazoe, *et al.*, *Nat. Commun.*, 2016, **7**, 10414).

Figure S6. Representative cyclic voltammograms of $Au_{54}Rh_{46}/CB$ on GC disk electrode in an N₂-saturated 0.50 mol dm⁻³ KOH solution with a potential scan rate of 0.10 V s⁻¹ at different numbers of potential sweep cycles.

Figure S7. Cyclic voltammograms of AuRh/CB immobilized on the GC disk electrode in an N₂-saturated 0.50 mol dm⁻³ KOH solution with a potential scan rate of 0.10 V s⁻¹. The samples were Au/CB (a), Au₇₇Rh₂₃/CB (b), Au₅₉Rh₄₁/CB (c), Au₅₅Rh₄₅/CB (d), Au₅₄Rh₄₆/CB (e), Au₄₄Rh₅₆/CB (f), Au₂₄Rh₇₆/CB (g), Au₁₅Rh₈₅/CB (h), and Rh/CB (i).

Figure S8. Hydrodynamic voltammograms of RRDE with an AuRh/CB-loaded GC disk in an O₂-saturated 0.50 M KOH aqueous solution under the rotation speed of 200–2500 rpm. The disk potential was scanned at a rate of 0.02 V s⁻¹. The catalysts used were Au/CB (a), Au₇₇Rh₂₃/CB (b), Au₅₉Rh₄₁/CB (c), Au₅₅Rh₄₅/CB (d), Au₅₄Rh₄₆/CB (e), Au₄₄Rh₅₆/CB (f), Au₂₄Rh₇₆/CB (g), Au₁₅Rh₈₅/CB (h), and Rh/CB (i). The disk currents were normalized by the geometric areas of their electrodes.

Figure S9. Koutecky-Levich plots of the current at +0.60 V vs. RHE for Au/CB (a) and the currents measured at +0.80 V vs. RHE for AuRh/CB (b-h) and Rh/CB (i). The results shown in Fig. S8 were used for the calculation.

Reference

(S1) A. Tressaud and P. Hagenmuller, J. Fluorine Chem., 2001, 111, 221.